Synthesis of RNA Crosslinking Oligonucleotides Modified with 2-Amino-7-Deaza-7-Propynyl-6-Vinylpurine.

Curr Protoc Nucleic Acid Chem

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai-shi, Japan.

Published: June 2019

This article describes procedures to synthesize 2'-OMe-RNA modified with cross-linkable 2-amino-7-deaza-7-propynyl-6-vinylpurine (ADpVP) and preparation of the RNA-crosslinking experiment in vitro. All synthesis steps yield the desired compound in moderate or high yield without expensive chemical reagents or specific devices. The crosslink-active form of modified RNA can also be purified by commonly used reversed-phase HPLC, can be stored at -80°C after lyophilization for a few days, and is ready to use for crosslinking experiments. This crosslink-active RNA can efficiently form covalent bonds with complementary RNA in a sequence-specific manner. © 2019 by John Wiley & Sons, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpnc.79DOI Listing

Publication Analysis

Top Keywords

synthesis rna
4
rna crosslinking
4
crosslinking oligonucleotides
4
oligonucleotides modified
4
modified 2-amino-7-deaza-7-propynyl-6-vinylpurine
4
2-amino-7-deaza-7-propynyl-6-vinylpurine article
4
article describes
4
describes procedures
4
procedures synthesize
4
synthesize 2'-ome-rna
4

Similar Publications

Multi-omics analysis and experimental verification reveal testicular fatty acid metabolism disorder in non-obstructive azoospermia.

Zool Res

January 2025

Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.

Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in non-obstructive azoospermia (NOA), a severe form of male infertility. However, the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated. Multi-omics analyses, including microarray analysis, single-cell RNA sequencing (scRNA-seq), and metabolomics, were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.

View Article and Find Full Text PDF

Deciphering the toxic effects of polystyrene nanoparticles on erythropoiesis at single-cell resolution.

Zool Res

January 2025

Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.

Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems, yet their impact on zebrafish ( ) embryonic development, particularly erythropoiesis, remains underexplored. This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos. validation experiments corroborated the transcriptomic findings, revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation, as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.

View Article and Find Full Text PDF

Ribosome profiling and single-cell RNA sequencing identify the unfolded protein response as a key regulator of pigeon lactation.

Zool Res

January 2025

National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.

Pigeons and certain other avian species produce a milk-like secretion in their crop sacs to nourish offspring, yet the detailed processes involved are not fully elucidated. This study investigated the crop sacs of 225-day-old unpaired non-lactating male pigeons (MN) and males initiating lactation on the first day after incubation (ML). Using RNA sequencing, ribosome profiling, and single-cell transcriptome sequencing (scRNA-seq), we identified a significant up-regulation of genes associated with ribosome assembly and protein synthesis in ML compared to MN.

View Article and Find Full Text PDF

Mature aggressive B-cell lymphomas, such as Burkitt lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL), show variations in microRNA (miRNA) expression. The entity of High-grade B-cell lymphoma with 11q aberration (HGBCL-11q) shares several biological features with both BL and DLBCL but data on its miRNA expression profile are yet scarce. Hence, this study aims to analyze the potential differences in miRNA expression of HGBCL-11q compared to BL and DLBCL.

View Article and Find Full Text PDF

The Disturbed Microbial Niches of Itchy Scalp.

J Cosmet Dermatol

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Background: Scalp itch without evident cause is an uncomfortable symptom that annoys many people in life but lacks adequate attention in academic.

Aims: To investigate the relationship between scalp itching and microorganisms, and identify the key microbes and predicted functions associated with scalp itching, furtherly to provide useful targets for scalp itch solution.

Methods: We performed microbial comparison between 44 normal subjects and 89 subjects having scalp itching problem with un-identified origin based on 16S rRNA gene sequencing and ddPCR (digital droplet PCR), and identified itch relevant microbes and predicted functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!