Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two simple unsymmetrical monometallic Ir(i) complexes with an N-heterocyclic carbene ligand and an analogous bimetallic Ir(i) complex were synthesised. These complexes were found to be extremely active catalysts for a range of C-X (X = N or O) and Si-N bond forming reactions involving alkyne and imine activation for dihydroalkoxylation, hydroamination and hydrosilylation reactions. These catalysts exhibited reaction rates far exceeding those of other Rh(i) and Ir(i) complexes previously reported. In addition, a small change to the ligand design (phenyl vs. mesityl) substantially affected both the reactivity and product selectivity of the catalyst. The Ir(i) complex bearing a mesitylene wingtip provided unprecedented regioselectivity in the dihydroalkoxylation reaction and a new kinetic product from the typical hydrosilylation protocol of 2-benyzlpyrroline to produce an N-silylaminoalkene. Our mechanistic studies indicated that this transformation proceeded via a dehydrogenative coupling mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt00313d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!