Real-Time Detection of Markers in Blood.

Nano Lett

Department of Dermatology, Cutaneous Biology Research Institute , Yonsei University College of Medicine, Seoul , 03722 , Republic of Korea.

Published: April 2019

AI Article Synopsis

  • The study presents a new biosensor capable of real-time detection of specific disease markers like cholera toxin and mercury(II) ions in blood without needing skin incisions.
  • The researchers developed silicon micropillar array electrodes that are functionalized with artificial peptides to target these markers, enabling high sensitivity detection.
  • This innovative technology may enhance early diagnosis of diseases and infections by providing a robust method for monitoring various molecular species in the bloodstream.

Article Abstract

The real-time selective detection of disease-related markers in blood using biosensors has great potential for use in the early diagnosis of diseases and infections. However, this potential has not been realized thus far due to difficulties in interfacing the sensor with blood and achieving transparent circuits that are essential for detecting of target markers (e.g., protein, ions, etc.) in a complex blood environment. Herein, we demonstrate the real-time detection of a specific protein and ion in blood without a skin incision. Complementary metal-oxide-semiconductor technology was used to fabricate silicon micropillar array (SiMPA) electrodes with a height greater than 600 μm, and the surface of the SiMPA electrodes was functionalized with a self-assembling artificial peptide (SAP) as a receptor for target markers in blood, i.e., cholera toxin (CTX) and mercury(II) ions (Hg). The detection of CTX was investigated in both in vitro (phosphate-buffered saline and human blood serum, HBO model) and in vivo (mouse model) modes via impedance analysis. In the in vivo mode, the SiMPA pierces the skin, comes into contact with the blood system, and creates comprehensive circuits that include all the elements such as electrodes, blood, and receptors. The SiMPA achieves electrically transparent circuits and, thus, can selectively detect CTX in the blood in real time with a high sensitivity of 50 pM and 5 nM in the in vitro and in vivo modes, respectively. Mercury(II) ions can also be detected in both the in vitro and the in vivo modes by changing the SAP. The results illustrate that a robust sensor that can detect a variety of molecular species in the blood system in real time that will be helpful for the early diagnosis of disease and infections.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.8b04775DOI Listing

Publication Analysis

Top Keywords

markers blood
12
blood
11
real-time detection
8
early diagnosis
8
transparent circuits
8
target markers
8
simpa electrodes
8
mercuryii ions
8
blood system
8
real time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!