Flexible Trapping and Manipulation of Single Cells on a Chip by Modulating Phases and Amplitudes of Electrical Signals Applied onto Microelectrodes.

Anal Chem

State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University, Beijing , 100084 , China.

Published: April 2019

These days, multiplex assay with diverse functions on a single chip has become more and more imperative for biological cell research. Multipoint and multistep manipulation for single cells on a chip plays a significant role for cell characterization, immunoassays, and rare cell isolation, etc. In this article, a novel dielectrophoresis (DEP)-based manipulation method is proposed to flexibly move and position cells on a chip via applying various electrical signals onto microelectrodes. By modulating phases and amplitudes of alternating current (ac) signals applied onto the microelectrodes, single cells can be controllably moved from one position to another along diverse directions on a chip. Quantitative analysis is conducted for position and direction controls via simulation, which are validated through experiments. With this flexible manipulation method, single-cell biophysical parameters can be estimated in situ by moving the cell, and as an example, single HeLa and MCF-7 cells are measured. This method allows an efficient and flexible transportation of single cells in lab-on-a-chip systems and provides a fundamental platform for multioriented and multipoint manipulation. The chip is easy to scale up by means of array design for more multifunctional cell assays.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b05228DOI Listing

Publication Analysis

Top Keywords

single cells
16
cells chip
12
manipulation single
8
modulating phases
8
phases amplitudes
8
electrical signals
8
signals applied
8
applied microelectrodes
8
manipulation method
8
single
6

Similar Publications

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

A safe haven for cancer cells: tumor plus stroma control by DYRK1B.

Oncogene

January 2025

Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.

The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!