A series of dinuclear dysprosium complexes bridged by pyridine-NO ligands with formula [Ln2(BTA)6(pyNO)2] (1Dy, Ln = Dy, 1Y, Ln = Y and 1Gd, Ln = Gd) (BTA = benzoyltrifluoroacetone, pyNO = pyridine-N-oxide) were structurally and magnetically characterized. The X-ray crystallographic analyses of the structures revealed that the NO group serves as the effective bridge to link two Dy(iii) centers and the periphery β-diketonate (BTA) ligands complete the rest of the coordination sphere. The dynamic magnetic measurements revealed that complex 1Dy displayed significant zero-field single-molecule magnetic (SMM) behaviour with 72 K energy barrier and 2.5 K hysteresis temperature. In order to extend this dinuclear system, double N-oxide bridged ligand 4,4'-bpdo(4,4'-bipyridine-N,N'-dioxide) was used, and consequently, a series of one-dimensional chain complexes possessing repeated [Ln2(BTA)6(pyNO)2] units were synthesized with formula [Ln2(BTA)6(4,4'-bpdo)]n·2EtOH (2Dy, Ln = Dy, 2Y, Ln = Y and 2Gd, Ln = Gd). The AC magnetic susceptibility measurements revealed that complex 2Dy exhibited significant zero-field slow magnetic relaxation behavior with a higher effective energy barrier of 87 K and a hysteresis temperature of 3 K than 1Dy albeit the separation between the repeated units is large.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt00210cDOI Listing

Publication Analysis

Top Keywords

one-dimensional chain
8
n-oxide bridged
8
single-molecule magnetic
8
measurements revealed
8
revealed complex
8
energy barrier
8
barrier hysteresis
8
hysteresis temperature
8
magnetic
5
zero-dimensional one-dimensional
4

Similar Publications

Synthesis and diverse crystal packing in o-, m- and p-bis(carbonylthioureido)benzenes containing bisferrocenes.

Acta Crystallogr C Struct Chem

February 2025

Institute of Applied Chemistry, Shanxi University, Wucheng, Taiyuan, Shanxi 030006, People's Republic of China.

Three bisferrocene-based bis(acylthiourea) positional isomers, namely, 1,2-bis(ferrocenylcarbonylthioureido)benzene (1), 1,3-bis(ferrocenylcarbonylthioureido)benzene (2) and 1,4-bis(ferrocenylcarbonylthioureido)benzene (3), all [Fe(CH)(CHNOS)], have been synthesized via facile nucleophilic addition reactions of 2.3 equivalents of ferrocenoyl isothiocyanate with o-, m- and p-phenylenediamine, respectively. The structures of the three new synthesized isomers were fully characterized by H NMR, C NMR, IR and UV-Vis spectroscopy, elemental analyses and cyclic voltammetry.

View Article and Find Full Text PDF

Revisiting the in-plane and in-channel diffusion of lithium ions in a solid-state electrolyte at room temperature through neural network-assisted molecular dynamics simulations.

Phys Chem Chem Phys

January 2025

Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.

Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.

View Article and Find Full Text PDF

We investigate the dynamics of non-interacting particles in a one-dimensional tight-binding chain in the presence of an electric field with random amplitude drawn from a Gaussian distribution, and explicitly focus on the nature of quantum transport. We derive an exact expression for the probability propagator and the mean-squared displacement in the clean limit and generalize it for the disordered case using the Liouville operator method. Our analysis reveals that in the presence a random static field, the system follows diffusive transport; however, an increase in the field strength causes a suppression in the transport and thus asymptotically leads towards localization.

View Article and Find Full Text PDF

A new series of 222 adelite-type Co(GeO)(OH) ( = La-Sm) single crystals were grown by a high-temperature, high-pressure hydrothermal method (650 °C and 100 MPa). Single-crystal diffraction refinements yielded chiral one-dimensional (1D) chains of Co along the axis with an average 2.98 Å separation between Co centers in the [CoO(OH)] ribbon chains.

View Article and Find Full Text PDF

Proton-electron mixed conductors (PEMCs) are an essential component for potential applications in hydrogen separation and energy conversion devices. However, the exploration of PEMCs with excellent mixed conduction, which is quantified by the ambipolar conductivity, σ = σσ/(σ + σ) (σ: electronic conductivity; σ: proton conductivity), is still a great challenge, largely due to the lack of structural characterization of both conducting mechanisms. In this study, we prepared a molecule-based proton-electron mixed-conducting cation radical salt, (ET)[Pt(pop)(Hpop)]·PhCN (ET: bis(ethylenedithio)tetrathiafulvalene, pop: PHO), by electrocrystallization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!