Polo-like kinase 1 (Plk1), a master regulator of mitosis and the DNA damage response, is considered to be an intriguing target in the research field of mitotic intervention. The observation that Plk1 is overexpressed in multiple human malignancies, including non-small-cell lung cancer (NSCLC), gave rise to the development of several small-molecule inhibitors. Volasertib, presently the most extensively studied Plk1 inhibitor, has been validated to efficiently reduce tumor growth in preclinical settings. Unfortunately, only modest antitumor activity against solid tumors was reported in clinical trials. This discrepancy prompted research into the identification of predictive biomarkers. In this study, we investigated the therapeutic effect of volasertib monotherapy (i.e., cytotoxicity, cell cycle distribution, apoptotic cell death, cellular senescence, and migration) in a panel of NSCLC cell lines differing in p53 status under both normal and reduced oxygen tension (<0.1% O ). A strong growth inhibitory effect was observed in p53 wild-type cells (A549 and A549-NTC), with IC values significantly lower than those in p53 knockdown/mutant cells (A549-920 and NCI-H1975) (P < 0.001). While mitotic arrest was significantly greater in cells with nonfunctional p53 (P < 0.005), apoptotic cell death (P < 0.026) and cellular senescence (P < 0.021) were predominantly induced in p53 wild-type cells. Overall, the therapeutic effect of volasertib was reduced under hypoxia (P < 0.050). Remarkably, volasertib inhibited cell migration in all cell lines tested (P < 0.040), with the exception of for the NCI-H1975 p53 mutant cell line. In conclusion, our results show an important difference in the therapeutic effect of Plk1 inhibition in NSCLC cells with versus without functional p53. Overall, the p53 wild-type cell lines were more sensitive to volasertib treatment, suggesting that p53 might be a predictive biomarker for Plk1 inhibition in NSCLC. Moreover, our results pave the way for new combination strategies with Plk1 inhibitors to enhance antitumor activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487694 | PMC |
http://dx.doi.org/10.1002/1878-0261.12477 | DOI Listing |
Sci Rep
January 2025
Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
Aging is characterized by cellular degeneration and impaired physiological functions, leading to a decline in male sexual desire and reproductive capacity. Oxidative stress (OS) lead to testicular aging by impairing the male reproductive system, but the potential mechanisms remain unclear. In the present study, the functional status of testicular tissues from young and aged boars was compared, and the transcriptional responses of Leydig cells (LCs) to hydrogen peroxide (HO)-induced senescence were explored, revealing the role of OS in promoting aging of the male reproductive system.
View Article and Find Full Text PDFCancer Res Commun
January 2025
Indiana University School of Medicine, Bloomington, IN, United States.
Ovarian cancer is a deadly gynecological disease with frequent recurrence. Current treatments for patients include platinum-based therapy regimens with PARP inhibitors specific for HR-deficient high-grade serous ovarian cancers (HGSOCs). Despite initial effectiveness, patients inevitably develop disease progression as tumor cells acquire resistance.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan. Electronic address:
Cellular senescence is an essentially irreversible cell cycle arrest associated with upregulated inflammatory responses that contribute to various pathological and physiological processes, including aging, cancer, and cancer prevention. However, the underlying mechanisms are not fully understood. Here, we show that the downregulation of CNOT3, a subunit of the CCR4-NOT complex that deadenylates mRNA poly(A) tails, promotes cellular senescence in subpopulation of A549 human non-small cell lung cancer cells.
View Article and Find Full Text PDFNat Prod Res
January 2025
Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK.
Cancer kills about 10 million people every year. Medicinal plants remain a major source in the global search for anticancer drugs. In this study, 3,4,3'-tri--methylflavellagic acid (MFA) was isolated from the methanol root extract of .
View Article and Find Full Text PDFCell Rep
January 2025
Genetics and Epigenetics Program, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA. Electronic address:
ERK activity oscillates between sustained activation during oocyte formation and transient inactivation during oocyte maturation, fertilization, and early embryogenesis. Consequences of ectopic ERK activity upon oocyte maturation and in early embryogenesis are unknown. We show, in Caenorhabditis elegans, that ectopic ERK activity upon oocyte maturation (metaphase I oocytes) results in embryos with abnormalities in nuclear divisions leading to embryonic death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!