Chlorarachniophyte and cryptophyte algae are unique among plastid-containing species in that they have a nucleomorph genome: a compact, highly reduced nuclear genome from a photosynthetic eukaryotic endosymbiont. Despite their independent origins, the nucleomorph genomes of these two lineages have similar genomic architectures, but little is known about the evolutionary pressures impacting nucleomorph DNA, particularly how their rates of evolution compare to those of the neighboring genetic compartments (the mitochondrion, plastid, and nucleus). Here, we use synonymous substitution rates to estimate relative mutation rates in the four genomes of nucleomorph-bearing algae. We show that the relative mutation rates of the host versus endosymbiont nuclear genomes are similar in both chlorarachniophytes and cryptophytes, despite the fact that nucleomorph gene sequences are notoriously highly divergent. There is some evidence, however, for slightly elevated mutation rates in the nucleomorph DNA of chlorarachniophytes-a feature not observed in that of cryptophytes. For both lineages, relative mutation rates in the plastid appear to be lower than those in the nucleus and nucleomorph (and, in one case, the mitochondrion), which is consistent with studies of other plastid-bearing protists. Given the divergent nature of nucleomorph genes, our finding of relatively low evolutionary rates in these genomes suggests that for both lineages a burst of evolutionary change and/or decreased selection pressures likely occurred early in the integration of the secondary endosymbiont.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456004 | PMC |
http://dx.doi.org/10.1093/gbe/evz056 | DOI Listing |
World J Oncol
February 2025
Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
Background: Peritumoral lidocaine infiltration prior to excision is associated with better survival in breast cancer (BC), which led us to hypothesize that innervation to the tumor affects its biology and patient survival. Activity-regulated cytoskeleton-associated protein (ARC) gene expression is known to be regulated by neuronal activity. Therefore, we studied the clinical relevance of ARC gene expression as a surrogate of neuronal activity in BC.
View Article and Find Full Text PDFPol J Pathol
January 2025
Karadeniz Technical University, Faculty of Medicine, Department of Pathology, Trabzon, Turkey.
The enzyme phosphatidylinositide-3-kinase (PI3K) regulates cellular proliferation and apoptosis. Somatic mutations in the PIK3CA gene can accelerate these processes and significantly contribute to the development and progression of breast cancer. This study aimed to ascertain the PIK3CA gene mutations in breast cancer patients and investigate their correlation with certain clinicopathological characteristics.
View Article and Find Full Text PDFHered Cancer Clin Pract
January 2025
Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
Carcinogenesis encompasses processes that lead to increased mutation rates, enhanced cellular division (tumour growth), and invasive growth. Colorectal cancer (CRC) carcinogenesis in carriers of pathogenic APC (path_APC) and pathogenic mismatch repair gene (path_MMR) variants is initiated by a second hit affecting the corresponding wild-type allele. In path_APC carriers, second hits result in the development of multiple adenomas, with CRC typically emerging after an additional 20 years.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Virology and Vaccine Research and Development Program, Department of Science and Technology-Industrial Technology Development Institute, Taguig City, Metro Manila 1631, Philippines; S&T Fellows Program, Department of Science and Technology, Taguig City, Metro Manila 1631, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Metro Manila 1000, Philippines. Electronic address:
Nipah virus (NiV) is a re-emerging zoonotic pathogen with a high mortality rate and no effective treatments, prompting the search for new antiviral strategies. While conventional antiviral drugs are often limited by issues such as poor specificity, off-target effects, and resistance development, nanobodies offer distinct advantages. These small, single-domain antibodies exhibit high specificity and stability, making them ideal candidates for antiviral therapy.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343.
Eukaryotic genome size varies considerably, even among closely related species. The causes of this variation are unclear, but weak selection against supposedly costly "extra" genomic sequences has been central to the debate for over 50 years. The mutational hazard hypothesis, which focuses on the increased mutation rate to null alleles in superfluous sequences, is particularly influential, though challenging to test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!