AI Article Synopsis

  • MTG16 is a corepressor protein that interacts with Kaiso to regulate specific target genes, influencing inflammation and tumor development in cancer.
  • Research using a mouse model of colitis-associated cancer showed that loss of MTG16 worsens tumor growth, while loss of Kaiso in MTG16-deficient mice surprisingly reduced tumor burden back to normal levels.
  • The study's findings suggest that Kaiso plays a crucial role in modifying the effects of MTG16 loss on inflammation and tumorigenesis, indicating that the regulation of these proteins could be important in understanding and potentially treating related cancers.

Article Abstract

The myeloid translocation gene family member MTG16 is a transcriptional corepressor that relies on the DNA-binding ability of other proteins to determine specificity. One such protein is the ZBTB family member Kaiso, and the MTG16:Kaiso interaction is necessary for repression of Kaiso target genes, such as matrix metalloproteinase-7. Using the azoxymethane and dextran sodium sulfate (AOM/DSS) murine model of colitis-associated carcinoma, we previously determined that MTG16 loss accelerates tumorigenesis and inflammation. However, it was unknown whether this effect was modified by Kaiso-dependent transcriptional repression. To test for a genetic interaction between MTG16 and Kaiso in inflammatory carcinogenesis, we subjected single and double knockout (DKO) mice to the AOM/DSS protocol. Mtg16 mice demonstrated increased colitis and tumor burden; in contrast, disease severity in Kaiso mice was equivalent to wild-type controls. Surprisingly, Kaiso deficiency in the context of MTG16 loss reversed injury and pro-tumorigenic responses in the intestinal epithelium following AOM/DSS treatment, and tumor numbers were returned to near to wild-type levels. Transcriptomic analysis of non-tumor colon tissue demonstrated that changes induced by MTG16 loss were widely mitigated by concurrent Kaiso loss, and DKO mice demonstrated downregulation of metabolism and cytokine-associated gene sets with concurrent activation of DNA damage checkpoint pathways as compared with Mtg16. Further, Kaiso knockdown in intestinal enteroids reduced stem- and WNT-associated phenotypes, thus abrogating the induction of these pathways observed in Mtg16 samples. Together, these data suggest that Kaiso modifies MTG16-driven inflammation and tumorigenesis and suggests that Kaiso deregulation contributes to MTG16-dependent colitis and CAC phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586520PMC
http://dx.doi.org/10.1038/s41388-019-0777-7DOI Listing

Publication Analysis

Top Keywords

mtg16 loss
12
kaiso
10
colitis-associated carcinoma
8
family member
8
mtg16
8
mtg16 kaiso
8
dko mice
8
mice demonstrated
8
kaiso required
4
required mtg16-dependent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!