Spontaneous polarization (P) in ferroelectrics has provided the impetus to develop piezoelectric devices such as sensors, actuators and diagnostic imaging transducers. Widely used lead-based perovskites exhibit a composition-driven phase diagram involving a transition region, known as a morphotropic phase boundary, where the ferroelectric structure changes dramatically and the piezoelectric activity is maximal. In some perovskites, ferroic polarization coexists with nonpolar rotations of octahedra, suggesting an unprecedented phase diagram. Here, we show morphotropic phase boundaries, where 'ferrielectric' appears as a bridging phase between ferroelectrics with rhombohedral and tetragonal symmetries in BiNaTiO-based perovskites. Neutron diffraction analysis demonstrates that the intermediate ferrielectric displays a small P resulting from up and down polarizations coupled with an in-phase TiO rotation. Our ab initio calculations indicate that a staggered Bi-O conformation at an appropriate chemical pressure delivers the ferrielectric-mediated phase boundaries, which provides a promising platform for (multi)ferroic materials with enhanced physical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411732 | PMC |
http://dx.doi.org/10.1038/s41598-019-40724-1 | DOI Listing |
Nature
January 2025
Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
Piezoelectric materials directly convert between electrical and mechanical energies. They are used as transducers in applications such as nano-positioning and ultrasound imaging. Improving the properties of these devices requires piezoelectric materials capable of delivering a large longitudinal strain on the application of an electric field.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Physics, Indian Institute of Technology Banaras Hindu University, Indian Institute of Technology (Banaras Hindu University), Department of Physics, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.
In the present work, we reinvestigate the atomic ordering of a Pb-free Morphotropic Phase Boundary (MPB) composition viz., K0.5Na0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
A novel approach to delicately control the phase of a ferroelectric has been developed using a continuous-wave laser scanning annealing (CW-LSA) process. After proper process optimization, the equivalent oxide thickness (EOT) of 3.5 Å with a dielectric constant (κ) of 68 Å is achieved from HZO in a metal-ferroelectric-metal (MFM) capacitor structure.
View Article and Find Full Text PDFHeliyon
June 2024
Signals, Systems and Components Laboratory (LSSC), Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2022, Fez, Morocco.
The solid-state reaction technique was employed to synthesize lead-free ceramics, specifically (1-x-y)(NaBi)TiO-xBaTiO-y(KBi)TiO. For attaining a pure perovskite phase, it was found that the optimal calcination temperature is 1000 °C, maintained for a duration of 4 h. Through X-ray diffraction (XRD) analysis, the morphotropic phase boundary (MPB) was detected in (1-x-y)NBT-xBT-yKBT ceramics for certain molar compositions, specifically in 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!