Defects in Fas function correlate with susceptibility to systemic autoimmune diseases like autoimmune lymphoproliferative syndrome (ALPS) and systemic lupus erythematosus (SLE). C57BL/6 lpr (B6/lpr) mice are used as an animal model of ALPS and develop a mild SLE phenotype. Involvement of interleukin-17A (IL-17A) has been suggested in both phenotypes. Since IL-17 receptor A is part of the signaling pathway of many IL-17 family members we investigated the role of IL-17 receptor signaling in disease development in mice with a B6/lpr background. B6/lpr mice were crossed with IL-17 receptor A deficient (IL-17RA KO) mice and followed over time for disease development. IL-17RA KO/lpr mice presented with significantly enhanced lymphoproliferation compared with B6/lpr mice, which was characterized by dramatic lymphadenomegaly/splenomegaly and increased lymphocyte numbers, expansion of double-negative (DN) T-cells and enhanced plasma cell formation. However, the SLE phenotype was not enhanced, as anti-nuclear antibody (ANA) titers and induction of glomerulonephritis were not different. In contrast, levels of High Mobility Group Box 1 (HMGB1) and anti-HMGB1 autoantibodies were significantly increased in IL-17RA KO/lpr mice compared to B6/lpr mice. These data show that lack of IL-17RA signaling aggravates the lymphoproliferative phenotype in B6/lpr mice but does not affect the SLE phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412096 | PMC |
http://dx.doi.org/10.1038/s41598-019-39483-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!