Three species of the β-Proteobacterial genus Herbaspirillum are able to fix nitrogen in endophytic associations with such important agricultural crops as maize, rice, sorghum, sugar-cane and wheat. In addition, Herbaspirillum rubrisubalbicans causes the mottled-stripe disease in susceptible sugar-cane cultivars as well as the red-stripe disease in some sorghum cultivars. The xylem of these cultivars exhibited a massive colonisation of mucus-producing bacteria leading to blocking the vessels. A cluster of eight genes (bcs) are involved in cellulose synthesis in Herbaspirillum rubrisubalbicans. Mutation of bcsZ, that encodes a 1,4-endoglucanase, impaired the exopolysaccharide production, the ability to form early biofilm and colonize sorghum when compared to the wild-type strain M1. This mutation also impaired the ability of Herbaspirillum rubrisubalbicans M1 to cause the red-stripe disease in Sorghum bicolor. We show cellulose synthesis is involved in the biofilm formation and as a consequence significantly modulates bacterial-plant interactions, indicating the importance of cellulose biosynthesis in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412066PMC
http://dx.doi.org/10.1038/s41598-019-40600-yDOI Listing

Publication Analysis

Top Keywords

herbaspirillum rubrisubalbicans
16
red-stripe disease
8
disease sorghum
8
cellulose synthesis
8
sorghum
5
herbaspirillum
5
cellulose
4
cellulose production
4
production increases
4
increases sorghum
4

Similar Publications

Endophytic diazotrophic plant growth-promoting bacteria Herbaspirillum rubrisubalbicans (HCC103), Herbaspirillum seropedicae (HRC54), Paraburkholderia tropica (Ppe8), Gluconacetobacter diazotrophicus (Pal5), and Nitrospirillum amazonense (CBAmC) have been used as inoculants for sugarcane. The genome sequences of these strains were used to design a set of specific primers for the real-time PCR (qPCR) assay. Primer specificity was confirmed by conventional PCR using the genomic DNAs of 25 related bacterial species and the five target strains.

View Article and Find Full Text PDF

It is generally accepted that L-asparagine is an important amino acid required for the fast growth of cells. Cancerous cells receive this amino acid from extracellular sources. The depletion of L-asparagine from its surrounding environments by asparaginase enzyme can be used as a therapeutic strategy in cancer patients.

View Article and Find Full Text PDF

as a Phytopathogenic Model to Study the Immune System of .

Mol Plant Microbe Interact

February 2020

Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, U.S.A.

is the causal agent of red stripe disease (RSD) and mottle stripe disease of sorghum and sugarcane, respectively. In all, 63 genotypes of were inoculated with , with 59 showing RSD symptoms. Quantitative trait loci (QTL) analysis in a recombinant inbred line (RIL) population identified several QTL associated with variation in resistance to RSD.

View Article and Find Full Text PDF

Three species of the β-Proteobacterial genus Herbaspirillum are able to fix nitrogen in endophytic associations with such important agricultural crops as maize, rice, sorghum, sugar-cane and wheat. In addition, Herbaspirillum rubrisubalbicans causes the mottled-stripe disease in susceptible sugar-cane cultivars as well as the red-stripe disease in some sorghum cultivars. The xylem of these cultivars exhibited a massive colonisation of mucus-producing bacteria leading to blocking the vessels.

View Article and Find Full Text PDF

Quantitative reverse transcription PCR (RT-qPCR) is an important tool for evaluating gene expression. However, this technique requires that specific internal normalizing genes be identified for different experimental conditions. To date, no internal normalizing genes are available for validation of data analyses for Herbaspirillum rubrisubalbicans strain HCC103, an endophyte that is part of the sugarcane consortium inoculant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!