KaiC, the core protein of the cyanobacterial clock, assembles into a hexamer upon ATP-binding. The hexameric KaiC from a cyanobacterium Synechococcus elongatus PCC 7942 (Se-KaiC) is a multifunctional enzyme with autokinase, autophosphatase and ATPase and these activities show a circadian rhythm in the presence of two other clock proteins, KaiA and KaiB both in vivo and in vitro. While an interplay among three enzymatic activities has been pointed out through studies on Se-KaiC as the basis of circadian rhythmicity in cyanobacteria, little is known about the structure and functions of KaiC from other cyanobacterial species. In this study, we established a protocol to prepare KaiC from Gloeocapsa sp. PCC 7428 (Gl-KaiC) belonging to a distinct genus from Synechococcus and characterized its oligomeric structure and function. The results demonstrate that Gl-KaiC shares the basic properties with Se-KaiC. The present protocol offers practical means for further analysis of structure and function of Gl-KaiC, which would provide insights into diversity and evolution of the clock systems in cyanobacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.03.051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!