Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse side effect of many anti-cancer chemotherapeutic treatments. CIPN often causes neuropathic pain in extremities, and oxidative stress has been shown to be a major contributing factor to this pain. In this study, we determined the site of oxidative stress associated with pain (specifically, mechanical hypersensitivity) in cisplatin- and paclitaxel-treated mouse models of CIPN and investigated the neurophysiological mechanisms accounting for the pain. C57BL/6N mice that received either cisplatin or paclitaxel (2 mg/kg, once daily on four alternate days) developed mechanical hypersensitivity to von Frey filament stimulations of their hindpaws. Cisplatin-induced mechanical hypersensitivity was inhibited by silencing of Transient Receptor Potential channels V1 (TRPV1)- or TRPA1-expressing afferents, whereas paclitaxel-induced mechanical hypersensitivity was attenuated by silencing of Aβ fibers. Although systemic delivery of phenyl N-tert-butylnitrone, a reactive oxygen species scavenger, alleviated mechanical hypersensitivity in both cisplatin- and paclitaxel-treated mice, intraplantar phenyl N-tert-butylnitrone was effective only in cisplatin-treated mice, and intrathecal phenyl N-tert-butylnitrone, only in paclitaxel-treated mice. In a reactive oxygen species-dependent manner, the mechanosensitivity of Aδ/C fiber endings in the hindpaw skin was increased in cisplatin-treated mice, and the excitatory synaptic strength in the spinal dorsal horn was potentiated in paclitaxel-treated mice. Collectively, these results suggest that cisplatin-induced mechanical hypersensitivity is attributed to peripheral oxidative stress sensitizing mechanical nociceptors, whereas paclitaxel-induced mechanical hypersensitivity is due to central (spinal) oxidative stress maintaining central sensitization that abnormally produces pain in response to Aβ fiber inputs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458664PMC
http://dx.doi.org/10.1177/1744806919840098DOI Listing

Publication Analysis

Top Keywords

mechanical hypersensitivity
28
oxidative stress
20
phenyl n-tert-butylnitrone
12
paclitaxel-treated mice
12
neuropathic pain
8
mechanical
8
hypersensitivity cisplatin-
8
cisplatin- paclitaxel-treated
8
cisplatin-induced mechanical
8
paclitaxel-induced mechanical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!