A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag₂S/BiFeO₃ Heterojunction Composites under Visible-Light Irradiation. | LitMetric

Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag₂S/BiFeO₃ Heterojunction Composites under Visible-Light Irradiation.

Nanomaterials (Basel)

State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China.

Published: March 2019

Z-scheme Ag₂S/BiFeO₃ heterojunction composites were successfully prepared through a precipitation method. The morphology and microstructure characterization demonstrate that Ag₂S nanoparticles (30⁻50 nm) are well-decorated on the surfaces of polyhedral BiFeO₃ particles (500⁻800 nm) to form Ag₂S/BiFeO₃ heterojunctions. The photocatalytic and photo-Fenton catalytic activities of the as-derived Ag₂S/BiFeO₃ heterojunction composites were evaluated by the degradation of methyl orange (MO) under visible-light irradiation. The photocatalytic result indicates that the Ag₂S/BiFeO₃ composites exhibit much improved photocatalytic activities when compared with bare Ag₂S and BiFeO₃. The optimum composite sample was observed to be 15% Ag₂S/BiFeO₃ with an Ag₂S mass fraction of 15%. Furthermore, the addition of H₂O₂ can further enhance the dye degradation efficiency, which is due to the synergistic effects of photo- and Fenton catalysis. The results of photoelectrochemical and photoluminescence measurements suggest a greater separation of the photoexcited electron/hole pairs in the Ag₂S/BiFeO₃ composites. According to the active species trapping experiments, the photocatalytic and photo-Fenton catalytic mechanisms of the Ag₂S/BiFeO₃ composites were proposed and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473958PMC
http://dx.doi.org/10.3390/nano9030399DOI Listing

Publication Analysis

Top Keywords

photocatalytic photo-fenton
12
photo-fenton catalytic
12
ag₂s/bifeo₃ heterojunction
12
heterojunction composites
12
ag₂s/bifeo₃ composites
12
ag₂s/bifeo₃
8
z-scheme ag₂s/bifeo₃
8
visible-light irradiation
8
composites
6
photocatalytic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!