(L.) Scop. is a wild common plant of the Brassicaceae family. It is known as "the singers' plant" for its traditional use in treating aphonia and vocal disability. Despite its wide use in herbal preparations, the molecular mechanism of action of extracts is not known. The plant is rich in glucosinolates and isothiocyanates, which are supposed to be its active compounds. Some members of this family, in particular allylisothiocyanate, are strong agonists of the transient receptor potential ankyrin 1 (TRPA1) channel, which is involved in the somatosensory perception of pungency as well as in the nociception pathway of inflammatory pain. This study aims to isolate the glucosinolates and isothiocianates from fresh to identify the major components and test their activity in in vitro assays with a cloned TRPA1 channel. Samples of cultivated have been extracted and the active compounds isolated by column chromatography, HPLC and PTLC. The main components glucoputranjivin, isopropylisothiocyanate and 2-buthylisothiocianate have been tested on TRPA1. The glucosinolates glucoputranjivin and sinigrin turned out to be inactive, while isopropylisothiocyanate and 2-buthylisothiocyanate are potent agonists of TRPA1, with an EC in the range of the high potency natural agonists identified so far for this somatosensory channel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429275PMC
http://dx.doi.org/10.3390/molecules24050949DOI Listing

Publication Analysis

Top Keywords

trpa1 channel
12
"the singers'
8
singers' plant"
8
vitro assays
8
active compounds
8
trpa1
5
isothiocyanates glucosinolates
4
glucosinolates scop
4
scop "the
4
plant" isolation
4

Similar Publications

TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.

View Article and Find Full Text PDF

Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in detecting harmful stimuli and endogenous ligands, primarily expressed in sensory neurons. Due to its role in pain and itch, TRPA1 is a potential drug target. We identified an oxindole core structure via high-throughput screening, modified it, and tested the modified compounds in vitro and in vivo.

View Article and Find Full Text PDF

Calmodulin binding is required for calcium mediated TRPA1 desensitization.

bioRxiv

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.

Calcium (Ca) ions affect nearly all aspects of biology. Excessive Ca entry is cytotoxic and Ca-mobilizing receptors have evolved diverse mechanisms for tight regulation that often include Calmodulin (CaM). TRPA1, an essential Ca-permeable ion channel involved in pain signaling and inflammation, exhibits complex Ca regulation with initial channel potentiation followed by rapid desensitization.

View Article and Find Full Text PDF

Oxylipin signalling is central in biology, mediating processes such as cellular homeostasis, inflammation and molecular signalling. It may also facilitate inter-partner communication in the cnidarian-dinoflagellate symbiosis, though this aspect remains understudied. In this study, four oxylipin receptors were characterised using immunohistochemistry and immunoblotting in the sea anemone Exaiptasia diaphana ('Aiptasia'): Prostaglandin E2 receptor 2 (EP2) and 4 (EP4), Transient Receptor Potential cation channel A1 (TRPA1) and Glutamate Receptor Ionotropic, Kainate 2 (GRIK2).

View Article and Find Full Text PDF

Ion Channels as Potential Drug Targets in Dry Eye Disease and Their Clinical Relevance: A Review.

Cells

December 2024

Center for Research on Harmful Effects of Biological and Chemical Hazards, Departments of Genetics, Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia.

Dry eye disease (DED) is a common multifactorial disorder characterized by a deficiency in the quality and/or quantity of tear fluid. Tear hyperosmolarity, the dysfunction of ion channel proteins, and eye inflammation are primarily responsible for the development and progression of DED. Alterations in the structure and/or function of ion channel receptors (transient receptor potential ankyrin 1 (TRPA1), transient receptor potential melastatin 8 (TRPM8), transient receptor potential vanilloid 1 and 4 (TRPV1 and TRPV4)), and consequent hyperosmolarity of the tears represent the initial step in the development and progression of DED.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!