Efficacy of Various Fungal and Bacterial Biocontrol Organisms for Control of Fusarium Wilt of Tomato.

Plant Dis

USDA-ARS, Biocontrol of Plant Diseases Laboratory, Beltsville, MD 20705.

Published: September 1998

Numerous fungi and bacteria, including existing biocontrol strains with known activity against soilborne fungal pathogens as well as isolates collected from the roots and rhizosphere of tomato plants growing in the field, were tested for their efficacy in controlling Fusarium wilt of tomato. Tomato seedlings were treated with the potential biocontrol agents in the greenhouse and transplanted into pathogen-infested field soil. Organisms tested included nonpathogenic strains of Fusarium spp., Trichoderma spp., Gliocladium virens, Pseudomonas fluorescens, Burkholderia cepacia, and others. Specific nonpathogenic isolates of F. oxysporum and F. solani collected from a Fusarium wilt-suppressive soil were the most effective antagonists, providing significant and consistent disease control (50 to 80% reduction of disease incidence) in several repeated tests. These isolates also were equally effective in controlling Fusarium wilt diseases of other crops, including watermelon and muskmelon. Other organisms, including isolates of G. virens, T. hamatum, P. fluorescens, and B. cepacia, also significantly reduced Fusarium wilt compared to disease controls (30 to 65% reduction), but were not as consistently effective as the nonpathogenic Fusarium isolates. Commercially available biocontrol products containing G. virens and T. harzianum (SoilGard and RootShield, respectively) also effectively reduced disease (62 to 68% reduction) when granules were incorporated into potting medium at 0.2% (wt/vol). Several fungal and bacterial isolates collected from the roots and rhizosphere of tomato plants also significantly reduced Fusarium wilt of tomato, but were no more effective than other previously identified biocontrol strains. Combinations of antagonists, including multiple Fusarium isolates, Fusarium with bacteria, and Fusarium with other fungi, also reduced disease, but did not provide significantly better control than the nonpathogenic Fusarium antagonists alone.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS.1998.82.9.1022DOI Listing

Publication Analysis

Top Keywords

fusarium wilt
20
fusarium
12
wilt tomato
12
fungal bacterial
8
biocontrol strains
8
isolates collected
8
collected roots
8
roots rhizosphere
8
rhizosphere tomato
8
tomato plants
8

Similar Publications

Background: Fungal diseases of plants have a serious impact on the quality and yield of crops, and some traditional pesticides can no longer cope with this problem. Therefore, it is of great significance to develop new pesticides with high efficiency and low toxicity.

Results: A series of flavonoid derivatives containing benzothiazole were designed and synthesized.

View Article and Find Full Text PDF

Marker-assisted selection in segregating populations of tomatoes for resistance to TYLCV, ToMV, and Fusarium wilt.

Mol Biol Rep

January 2025

Department of Agronomy and Plant Breeding Sciences, Agricultural College of Aburaihan, University of Tehran, Pakdasht, Iran.

Background: Tomato yellow leaf curl virus (TYLCV), tomato mosaic virus (ToMV), and Fusarium wilt are three of tomatoes' most important viral and fungal diseases.

Methods And Results: In this study, the application of molecular markers associated with tomato yellow leaf curl virus resistance gene (Ty1), tomato mosaic virus resistance gene (Tm2), and Fusarium wilt resistance gene (I-1) (linked marker) were evaluated. In order to optimize and use SNP markers (by HRM diagnostic method) and SCAR markers, segregating populations of tomatoes were produced by self-pollination of commercial hybrid cultivars.

View Article and Find Full Text PDF

Correction to: Genome‑wide analysis of autophagy‑related genes (ATGs) in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt.

Plant Cell Rep

January 2025

Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.

View Article and Find Full Text PDF

Subabul (Leucaena leucocephala L.) is a leguminous species often referred to as the "miracle tree," it provides numerous ecosystem services and exhibits robust ecological characteristics. However, the infection caused by phytopathogenic fungi is poorly understood in Subabul.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!