Mesenchymal stem cells (MSCs) can trans/differentiate to neural precursors and/or mature neurons and promote neuroprotection and neurogenesis. The above could greatly benefit neurodegenerative disorders as well as in the treatment of post-traumatic and hereditary diseases of the central nervous system (CNS). In order to attain an ideal source of adult MSCs for the treatment of CNS diseases, adipose tissue, bone marrow, skin and umbilical cord derived MSCs were isolated and studied to explore differences with regard to neural differentiation capacity. In this study, we demonstrated that MSCs from several tissues can differentiate into neuron-like cells and differentially express progenitors and mature neural markers. Adipose tissue MSCs exhibited significantly higher expression of neural markers and had a faster proliferation rate. Our results suggest that adipose tissue MSCs are the best candidates for the use in neurological diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437714PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213032PLOS

Publication Analysis

Top Keywords

adipose tissue
12
neural differentiation
8
differentiation capacity
8
neural markers
8
tissue mscs
8
neural
6
mscs
6
comparative study
4
study neural
4
capacity mesenchymal
4

Similar Publications

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.

Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.

View Article and Find Full Text PDF

Non-communicable diseases (NCD) are associated with inflammation and oxidative stress which is further associated with omega-6 (ω6) and omega-3 (ω3) fatty acid (FA) imbalance favoring ω6 FA. By improving ω3 FA consumption, this imbalance can be altered to control NCD. Previously we have reported blends of flaxseed oil (FSO, ω3 FA) with palm olein (PO) or coconut oil (CO) were thermo-oxidatively stable with good storage stability and could improve ω6:ω3 ratio in cell lines.

View Article and Find Full Text PDF

: Paclitaxel (PTX), a commonly used chemotherapy for breast cancer (BC), is associated with dose-limiting toxicities (DLTs) such as peripheral neuropathy and neutropenia. These toxicities frequently lead to dose reductions, treatment delays, or therapy discontinuation, negatively affecting patients' quality of life and clinical outcomes. Current dosing strategies based on body surface area (BSA) fail to account for individual variations in body composition (skeletal muscle mass (SMM) and adipose tissue (AT) mass) and physical activity (PA), which can influence drug metabolism and toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!