BAR-based multi-dimensional nonequilibrium pulling for indirect construction of a QM/MM free energy landscape.

Phys Chem Chem Phys

State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Published: March 2019

Construction of free energy landscapes at the quantum mechanics (QM) level is computationally demanding. As shown in previous studies, by employing an indirect scheme (i.e. constructing a thermodynamic cycle connecting QM states via an alchemical pathway), simulations are converged with much less computational burden. The indirect scheme makes QM/molecular mechanics (MM) free energy simulation orders of magnitude faster than the direct QM/MM schemes. However, the indirect QM/MM simulations were mostly equilibrium sampling based and the nonequilibrium methods were merely exploited in one-dimensional alchemical QM/MM end-state correction at two end states. In this work, we represent a multi-dimensional nonequilibrium pulling scheme for indirect QM/MM free energy simulations, where the whole free energy simulation is performed only with nonequilibrium methods. The collective variable (CV) space we explore is a combination of one alchemical CV and one physically meaningful CV. The current nonequilibrium indirect QM/MM simulation method can be seen as the generalization of equilibrium perturbation based indirect QM/MM methods. The test systems include one backbone dihedral case and one distance case. The two cases are significantly different in size, enabling us to investigate the dependence of the speedup of the indirect scheme on the size of the system. It is shown that the speedup becomes larger when the size of the system becomes larger, which is consistent with the scaling behavior of QM Hamiltonians.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp07012aDOI Listing

Publication Analysis

Top Keywords

free energy
20
indirect qm/mm
16
indirect scheme
12
multi-dimensional nonequilibrium
8
nonequilibrium pulling
8
indirect
8
qm/mm free
8
energy simulation
8
nonequilibrium methods
8
size system
8

Similar Publications

The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.

View Article and Find Full Text PDF

The Mu2e and COMET experiments are expected to improve existing limits on charged lepton flavor violation (CLFV) by roughly 4 orders of magnitude. μ→e conversion experiments are typically optimized for electrons produced without nuclear excitation, as this maximizes the electron energy and minimizes backgrounds from the free decay of the muon. Here we argue that Mu2e and COMET will be able to extract additional constraints on CLFV from inelastic μ→e conversion, given the ^{27}Al target they have chosen and backgrounds they anticipate.

View Article and Find Full Text PDF

Materials that are constantly driven out of thermodynamic equilibrium, such as active and living systems, typically violate the Einstein relation. This may arise from active contributions to particle fluctuations which are unrelated to the dissipative resistance of the surrounding medium. We show that in these cases the widely used relation between informatic entropy production and heat dissipation does not hold.

View Article and Find Full Text PDF

Harmless and efficient nickel enrichment from nickel-containing waste slag using vitrification technology.

Environ Sci Pollut Res Int

January 2025

Qingdao Qingli Environmental Protectionquipmen Co, LTD, Jiaozhou, 266300, China.

With the growing demand for nickel in the stainless steel and battery industries, conventional methods of extracting nickel from ores face challenges such as high production costs and environmental concerns. This study proposes a new process for the recovery of nickel metal and the production of nickel-iron alloys from nickel-bearing scrap. The reduction rates of nickel and iron oxides were investigated by optimizing the roasting temperature, time, and C/O ratio, and the process was optimized using response surface methodology (RSM).

View Article and Find Full Text PDF

Purpose Of Review: Protein intake is recognized as a key nutritional factor crucial for optimizing Metabolic Bariatric Surgery (MBS) outcomes by preventing protein malnutrition, preserving fat-free mass, and inducing satiety. This paper discusses the current evidence regarding protein intake and its impact on clinical outcomes following MBS.

Recent Findings: There are considerable gaps in the understanding of protein requirements following MBS, as existing guidelines are based on limited and inconsistent reports.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!