Vaccines are a 20 century medical marvel. They have dramatically reduced the morbidity and mortality caused by infectious diseases and contributed to a striking increase in life expectancy around the globe. Nonetheless, determining vaccine efficacy remains a challenge. Emerging evidence suggests that the current acellular vaccine (aPV) for Bordetella pertussis (B. pertussis) induces suboptimal immunity. Therefore, a major challenge is designing a next-generation vaccine that induces protective immunity without the adverse side effects of a whole-cell vaccine (wPV). Here we describe a protocol that we used to test the efficacy of a promising, novel adjuvant that skews immune responses to a protective Th1/Th17 phenotype and promotes a better clearance of a B. pertussis challenge from the murine respiratory tract. This article describes the protocol for mouse immunization, bacterial inoculation, tissue harvesting, and analysis of immune responses. Using this method, within our model, we have successfully elucidated crucial mechanisms elicited by a promising, next-generation acellular pertussis vaccine. This method can be applied to any infectious disease model in order to determine vaccine efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304499PMC
http://dx.doi.org/10.3791/58930DOI Listing

Publication Analysis

Top Keywords

vaccine efficacy
12
immune responses
8
vaccine
7
evaluation host-pathogen
4
host-pathogen responses
4
responses vaccine
4
efficacy
4
efficacy mice
4
mice vaccines
4
vaccines century
4

Similar Publications

The discovery of broadly protective antibodies to the influenza virus neuraminidase (NA) has raised interest in NA as a vaccine target. However, recombinant, solubilized tetrameric NA ectodomains are often challenging to express and isolate, hindering the study of anti-NA humoral responses. To address this obstacle, we established a panel of 22 non-adherent cell lines stably expressing native, historical N1, N2, N3, N9, and NB NAs anchored on the cell surface.

View Article and Find Full Text PDF

Unlabelled: The immune system plays a central role in controlling acute hepatitis B infection and in patients resolving chronic hepatitis B (CHB). Given that 221 million (75%) of CHB patients reside in low- and middle-income countries, the development of a vaccine with therapeutic properties represents a rational and cost-effective approach more than a romantic endeavor. This review systematically analyzes the key variables related to the safety, efficacy, and effectiveness of CHB treatments.

View Article and Find Full Text PDF

The recent landscape of RSV vaccine research.

Ther Adv Vaccines Immunother

January 2025

Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, OX1 2JD, UK.

Respiratory syncytial virus (RSV) causes a significant burden of acute respiratory illness across all ages, particularly for infants and older adults. Infants, especially those born prematurely or with underlying health conditions, face a high risk of severe RSV-related lower respiratory tract infections (LRTIs). Globally, RSV contributes to millions of LRTI cases annually, with a disproportionate burden in low- and middle-income countries (LMICs).

View Article and Find Full Text PDF

Tissue-resident memory T (T) cells are crucial components of the immune system that provide rapid, localized responses to recurrent pathogens at mucosal and epithelial barriers. Unlike circulating memory T cells, T cells are located within peripheral tissues, and they play vital roles in antiviral, antibacterial, and antitumor immunity. Their unique retention and activation mechanisms, including interactions with local epithelial cells and the expression of adhesion molecules, enable their persistence and immediate functionality in diverse tissues.

View Article and Find Full Text PDF

Introduction: Cystic echinococcosis (CE), a chronic disabling parasitic zoonosis, poses a great threat to public health and livestock production and causes huge economic losses globally. The commercial Quil-A-adjuvanted Eg95 vaccine was empirically effective for CE control; however, it is expensive and has side effects and insufficient immunity.

Purpose: This study aimed to employ a novel adjuvant consisting of a delivery system and an immune potentiator and assess its adjuvanticity to Eg95 antigen, thereby developing a safe and cost-effective novel vaccine against the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!