Chuanxiong rhizome has been widely used for the treatment of cerebral vascular disease in traditional Chinese medicine. The integrity of blood-brain barrier (BBB) is closely linked to the cerebral vascular disease. The protective effects of ligustilide, the major bioactive component in Chuanxiong rhizome, on cerebral blood vessels have been reported previously, but its effects and potential mechanism on BBB have not been entirely clarified. In the current work, the effects of ligustilide on BBB permeability and the underlying molecular mechanisms had been investigated using the model of BBB established by coculturing astrocytes and brain microvascular endothelial cells isolated from the rat brain. The ischemia-damaged model of BBB has been established with oxygen and glucose deprivation (OGD). Our results indicated that OGD significantly increased the permeability in the coculture BBB model. This OGD-induced increase in permeability could suppress by ligustilide in a concentration-dependent manner. Also, ligustilide promoted both gene and protein expression of tight junction proteins. Ligustilide suppressed the upregulation of HIF-1α, vascular endothelial growth factor, and AQP-4 in the BBB model induced by OGD. Collectively, all results have demonstrated that ligustilide is capable of reducing the permeability of BBB in vitro model induced by OGD through HIF-1α/vascular endothelial growth factor pathway and AQP-4, which provide a new target for the clinical application of ligustilide on BBB after stroke in future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FJC.0000000000000664 | DOI Listing |
Pharm Dev Technol
January 2025
Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, China.
Objective: This study aims to develop a dual-ligand-modified targeted drug delivery system by integrating photosensitizers and chemotherapeutic drugs to enhance anti-glioma effects. The system is designed to overcome the blood-brain barrier (BBB) that hinders effective drug delivery, increase drug accumulation in glioma cells, and thereby enhance therapeutic efficacy.
Methods: Liposomes were prepared using the film dispersion-ammonium sulfate gradient technique, co-loading the photosensitizer indocyanine green (ICG) and the chemotherapeutic drug mitoxantrone (MTO).
Stroke
January 2025
Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom.
Background: How cerebral microbleeds (CMBs) are formed, and how they cause tissue damage is not fully understood, but it has been suggested they are associated with inflammation, and they could also be related to increased blood-brain barrier (BBB) leakage. We investigated the relationship of CMBs with inflammation and BBB leakage in cerebral small vessel disease, and in particular, whether these 2 processes were increased in the vicinity of CMBs.
Methods: In 54 patients with sporadic cerebral small vessel disease presenting with lacunar stroke, we simultaneously assessed microglial activation using the positron emission tomography ligand [11C]PK11195 and BBB leakage using dynamic contrast enhanced magnetic resonance imaging, on a positron emission tomography-magnetic resonance imaging system.
Front Cell Neurosci
December 2024
Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasília, Brazil.
The persistence or emergence of long-term symptoms following resolution of primary SARS-CoV-2 infection is referred to as long COVID or post-acute sequelae of COVID-19 (PASC). PASC predominantly affects the cardiovascular, neurological, respiratory, gastrointestinal, reproductive, and immune systems. Among these, the central nervous system (CNS) is significantly impacted, leading to a spectrum of symptoms, including fatigue, headaches, brain fog, cognitive impairment, anosmia, hypogeusia, neuropsychiatric symptoms, and peripheral neuropathy (neuro-PASC).
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil.
A cystine-dense peptide (CDP) named TfRB1 was identified for its ability to bind to the transferrin receptor (TfR). CDPs are stabilized by their disulfide bonds, and variants of TfRB1 - specifically TfRB1G1, TfRB1G2, and TfRB1G3 - are explored for their potential to transport molecules across the blood-brain barrier (BBB) into the central nervous system (CNS). This study employed molecular modeling and dynamics simulations to characterize the interactions between these TfRB1 variants and TfR.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China. Electronic address:
This study aims to develop and evaluate a novel therapeutic strategy for Alzheimer's disease (AD) by overcoming the blood-brain barrier (BBB) limitations of Neurotrophin-3 (NT-3). NT-3, a critical neurotrophic factor, plays essential roles in hippocampal neuron growth, survival, and synaptic plasticity, making it a promising candidate for AD treatment. However, its clinical application is hindered by its inability to cross the BBB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!