The Pfeiffer effect is observed when an optically active compound such as an amino acid is introduced to a solution containing a labile racemic metal complex, and an equilibrium shift is obtained. The "perturbation" results in an excess of one enantiomer over the other. The shift is a result of a preferential outer sphere interaction between the introduced chiral species and one enantiomeric form (Λ or Δ) of a labile metal complex. Speculations regarding the mechanism of the Pfeiffer effect have attributed observations to a singular factor such as pH, solvent polarity, or numerous other intermolecular interactions. Through the use of the lanthanide(III) complexes [Tb(DPA)] and [Eu(DPA)] (where DPA = 2,6-pyridinedicarboxylate) and the amino acids l-serine and l-proline; it is becoming clear that the mechanism is not so simply described as per the preliminary findings that are discussed in this study. It appears that the true mechanism is far more complicated than the attribute just a singular factor. This work attempts to shine light on the fact that understanding the behavior of the solvent environment may hypothetically be the key to offering a more detailed description of the mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402352 | PMC |
http://dx.doi.org/10.3390/inorganics6030087 | DOI Listing |
Objective: Progression of prediabetes to type 2 diabetes has been associated with β-cell dysfunction, whereas its remission to normoglycemia has been related to improvement of insulin sensitivity. To understand the mechanisms and identify potential biomarkers related to prediabetes trajectories, we compared the proteomics and metabolomics profile of people with prediabetes progressing to diabetes or reversing to normoglycemia within 1 year.
Research Design And Methods: The fasting plasma concentrations of 1,389 proteins and the fasting, 30-min, and 120-min post-oral glucose tolerance test (OGTT) plasma concentrations of 152 metabolites were measured in up to 134 individuals with new-onset diabetes, prediabetes, or normal glucose tolerance.
Genome Med
December 2024
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
Int J Clin Health Psychol
October 2024
Department of Kinesiology, Michigan State University, 126 IM Sports Circle, East Lansing, MI 48824-1049, United States.
The pervasiveness of anxiety and stress among college students necessitates the investigation of potential alternative and accessible interventions which can be implemented into existing curricular and student-support programming to improve students' mental health. Mindfulness based cognitive therapy (MBCT) smartphone applications have shown promising outcomes in alleviating anxiety and stress. However, it is essential to gain insight into the feasibility and efficacy of such an interventional approach in a collegiate population, as well as explore potential underlying mechanisms, which could be better targeted to enhance the efficacy of future interventions for promoting mental health and well-being.
View Article and Find Full Text PDFNutrients
October 2024
Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
: Observational studies have noted that patients with certain retinal degenerative diseases exhibit iron disturbances in the retina or vitreous compared to healthy controls. However, the connection between serum iron status and these diseases remains unclear. This study aims to explore the potential causal relationship between serum iron status biomarkers and the development of age-related macular degeneration (AMD), retinitis pigmentosa (RP), and diabetic retinopathy (DR).
View Article and Find Full Text PDFNat Nanotechnol
November 2024
Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
Biosensors play key roles in medical research and diagnostics. However, the development of biosensors for new biomolecular targets of interest often involves tedious optimization steps to ensure a high signal response at the analyte concentration of interest. Here we show a modular nanosensor platform that facilitates these steps by offering ways to decouple and independently tune the signal output as well as the response window.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!