MicroRNAs (miRNAs) are small non-coding RNAs of 18-25 nucleotides that modulate gene expression at the post-transcriptional level. Grape seed proanthocyanidins (GSPs), which are biologically active components in grape seeds, have been demonstrated to exhibit anticancer effects. The current study investigated whether GSPs can regulate miRNA expression and the possible anticancer molecular mechanisms of GSPs. Pancreatic cancer (PC) cell samples, SS3, SS12 and SS24, were treated with 20 µg/ml GSPs for 3, 12 and 24 h, respectively. Control samples, SC3, SC12 and SC24, were also prepared. Using miRNA-seq, transcriptome analysis identified 24, 83 and 83 differentially expressed (DE) miRNAs in SS3 vs. SC3, SS12 vs. SC12 and SS24 vs. SC24, respectively. This indicated that treatment with GSPs could modulate the expression of miRNAs. Subsequently, 74, 598 and 1,204 target genes for the three sets of DE miRNAs were predicted. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that multiple target genes were associated with the proliferation and apoptosis of PC cells. In addition, a network was constructed of the DE miRNAs and the target genes associated with PC. The associations identified suggested that treatment with GSPs may inhibit the proliferation of PC cells through the modulation of miRNA expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365901 | PMC |
http://dx.doi.org/10.3892/ol.2019.9887 | DOI Listing |
J Reprod Immunol
January 2025
Department of Chinese Medicine Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 50001, China. Electronic address:
Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
Introduction: Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the and genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
In the early stages, chronic kidney disease (CKD) can be asymptomatic, marking diagnosis difficult. This study aimed to investigate the diagnostic role and potential regulatory mechanisms of nucleolar protein 14 (NOP14) -antisense RNA 1 (AS1) in patients with CKD. Herein, 68 patients with CKD, 65 patients with CKD undergoing peridialysis, and 80 healthy adults were included.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Human Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.
In most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!