Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with many contributing risk genes and loci. To date, several intellectual disability (ID) susceptibility genes have frequently been identified in ASD. Here, whole exome sequencing was carried out on a proband with ASD and identified compound heterozygous mutations of the , which plays a role in the neuronal NF-κB signaling pathway. These mutations consisted of a novel frameshift mutation (c.2415_2416insC, p.His806Profs9) and a rare splice site mutation (c.3349+1G>A) that were segregated from an unaffected father and unaffected mother, respectively. These two heterozygous mutations were also identified in the patient's older brother with ID. Quantitative RT-PCR revealed a significant reduction of transcript in two siblings. This study first describes compound heterozygous mutations of the gene in two siblings with ASD and ID, which is notable as only homozygous mutations or compound heterozygous for copy number variations and rare variant in this gene have been reported to date and associated with autosomal recessive intellectual disability. The two siblings carrying compound heterozygous mutations presented with ID, developmental delay, microcephaly and brain abnormalities similarly to the clinical features found in almost cases with homozygous mutation in previous studies. Together this study provides evidence that clinical manifestations of mutations as seen in our patients with ID and autism may be broader than previous case reports have indicated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396715PMC
http://dx.doi.org/10.3389/fgene.2019.00061DOI Listing

Publication Analysis

Top Keywords

compound heterozygous
20
heterozygous mutations
20
intellectual disability
12
mutations
8
mutations gene
8
gene siblings
8
heterozygous
6
novel compound
4
siblings
4
siblings autism
4

Similar Publications

Background: ALG8-congenital disorder of glycosylation (ALG8-CDG) is a rare inherited metabolic disorder leading to severe multisystem manifestations, with no reported prenatal patients to date.

Methods: We describe two fetuses from a single family with ALG8-CDG presenting with prenatal hydrops, undergoing comprehensive prenatal ultrasound, umbilical cord blood biochemistry, autopsy, placental pathology, and genetic testing.

Results: Prenatal ultrasound revealed fetal hydrops, skeletal anomalies, cardiac developmental abnormalities, cataracts, echogenic kidneys and bowel, oligohydramnios, choroid plexus cysts, and intrauterine growth restriction.

View Article and Find Full Text PDF

Background: Meier-Gorlin syndrome (MGORS) is a rare autosomal inherited form of primordial dwarfism. Pathogenic variants in 13 genes involved in DNA replication initiation have been identified in this disease, but homozygous intronic variants have never been reported. Additionally, whether growth hormone (GH) treatment can increase the height of children with MGORS is unclear.

View Article and Find Full Text PDF

Bone marrow transplantation reverses metabolic alterations in multiple sulfatase deficiency: a case series.

Commun Med (Lond)

January 2025

Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.

Background: Multiple sulfatase deficiency (MSD) is an exceptionally rare neurodegenerative disorder due to the absence or deficiency of 17 known cellular sulfatases. The activation of all these cellular sulfatases is dependent on the presence of the formylglycine-generating enzyme, which is encoded by the SUMF1 gene. Disease-causing homozygous or compound heterozygous variants in SUMF1 result in MSD.

View Article and Find Full Text PDF

The hERG1 potassium channel conducts the cardiac repolarizing current, IKr. hERG1 has emerged as a therapeutic target for cardiac diseases marked by prolonged actional potential duration (APD). Unfortunately, many hERG1 activators display off-target and proarrhythmic effects that limit their therapeutic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!