Exposure to malnutrition early in development increases likelihood of neuropsychiatric disorders, affective processing disorders, and attentional problems later in life. Many of these impairments are hypothesized to arise from impaired development of the prefrontal cortex. The current experiments examine the impact of prenatal malnutrition on the noradrenergic and cholinergic axons in the prefrontal cortex to determine if these changes contribute to the attentional deficits seen in prenatal protein malnourished rats (6% casein vs. 25% casein). Because prenatally malnourished animals had significant decreases in noradrenergic fibers in the prelimbic cortex with spared innervation in the anterior cingulate cortex and showed no changes in acetylcholine innervation of the prefrontal cortex, we compared deficits produced by malnutrition to those produced in adult rats by noradrenergic lesions of the prelimbic cortex. All animals were able to perform the baseline sustained attention task accurately. However, with the addition of visual distractors to the sustained attention task, animals that were prenatally malnourished and those that were noradrenergically lesioned showed cognitive rigidity, i.e., were less distractible than control animals. All groups showed similar changes in behavior when exposed to withholding reinforcement, suggesting specific attentional impairments rather than global difficulties in understanding response rules, bottom-up perceptual problems, or cognitive impairments secondary to dysfunction in sensitivity to reinforcement contingencies. These data suggest that prenatal protein malnutrition leads to deficits in noradrenergic innervation of the prelimbic cortex associated with cognitive rigidity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396814PMC
http://dx.doi.org/10.3389/fnins.2019.00123DOI Listing

Publication Analysis

Top Keywords

prelimbic cortex
16
prenatal protein
12
sustained attention
12
attention task
12
prefrontal cortex
12
protein malnutrition
8
cortex
8
prenatally malnourished
8
cognitive rigidity
8
malnutrition
5

Similar Publications

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

Inhibition of the Basolateral Amygdala to Prelimbic Cortex Pathway Enhances Risk-taking during Risky Decision-making Shock Task in Rats.

Physiol Behav

January 2025

Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China. Electronic address:

Many animal studies have explored decision-making under risk and punishment, particularly regarding potential rewards, but less focus has been placed on contexts involving net losses. Understanding decision-making under net loss conditions can shed light on the neural mechanisms involved. The basolateral amygdala to prelimbic cortex (BLA→PL) pathway is crucial for risky decision-making.

View Article and Find Full Text PDF

Cognitive processes such as action planning and decision-making require the integration of multiple sensory modalities in response to temporal cues, yet the underlying mechanism is not fully understood. Sleep has a crucial role for memory consolidation and promoting cognitive flexibility. Our aim is to identify the role of sleep in integrating different modalities to enhance cognitive flexibility and temporal task execution while identifying the specific brain regions that mediate this process.

View Article and Find Full Text PDF

Treadmill exercise prevents stress-induced anxiety-like behaviors via enhancing the excitatory input from the primary motor cortex to the thalamocortical circuit.

Nat Commun

January 2025

Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.

Physical exercise effectively prevents anxiety disorders caused by environmental stress. The neural circuitry mechanism, however, remains incomplete. Here, we identified a previously unrecognized pathway originating from the primary motor cortex (M1) to medial prefrontal cortex (mPFC) via the ventromedial thalamic (VM) nuclei in male mice.

View Article and Find Full Text PDF

A single exposure to a stressful event can result in enduring changes in behaviour. Long-term modifications in neuronal networks induced by stress are well explored but the initial steps leading to these alterations remain incompletely understood. In this study, we found that acute stress exposure triggers an immediate increase in the firing activity of calretinin-positive neurons in the paraventricular thalamic nucleus (PVT/CR+) that persists for several days in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!