AI Article Synopsis

Article Abstract

Unlocking the secrets of the brain is a task fraught with complexity and challenge - not least due to the intricacy of the circuits involved. With advancements in the scale and precision of scientific technologies, we are increasingly equipped to explore how these components interact to produce a vast range of outputs that constitute function and disease. Here, an insight is offered into key areas in which the marriage of neuroscience and nanotechnology has revolutionized the industry. The evolution of ever more sophisticated nanomaterials culminates in network-operant functionalized agents. In turn, these materials contribute to novel diagnostic and therapeutic strategies, including drug delivery, neuroprotection, neural regeneration, neuroimaging and neurosurgery. Further, the entrance of nanotechnology into future research arenas including optogenetics, molecular/ion sensing and monitoring, and piezoelectric effects is discussed. Finally, considerations in nanoneurotoxicity, the main barrier to clinical translation, are reviewed, and direction for future perspectives is provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404766PMC
http://dx.doi.org/10.1002/adfm.201700489DOI Listing

Publication Analysis

Top Keywords

nanotechnology neuroscience
4
neuroscience promising
4
promising approaches
4
approaches diagnostics
4
diagnostics therapeutics
4
therapeutics brain
4
brain activity
4
activity mapping
4
mapping unlocking
4
unlocking secrets
4

Similar Publications

Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework.

View Article and Find Full Text PDF

Colorectal cancer represents 10% of all the annual tumors diagnosed worldwide, being often not timely diagnosed, because its symptoms are typically lacking or very mild. Therefore, it is crucial to develop and validate innovative low-invasive techniques to detect it before becoming intractable. To this aim, a device equipped with nanostructured gas sensors has been employed to detect the airborne molecules of blood samples collected from healthy subjects, and from colorectal cancer affected patients at different stages of their pre- and post-surgery therapeutic path.

View Article and Find Full Text PDF

Background: Healthcare providers (HCP) face various stressful conditions in hospitals that result in the development of anxiety disorders. However, due to heavy workloads, they often miss the opportunity for self-care. Any effort to diminish this problem improves the quality of Healthcare providers and enhances patient safety.

View Article and Find Full Text PDF

Implantable multifunctional probes have transformed neuroscience research, offering access to multifaceted brain activity that was previously unattainable. Typically, simultaneous access to both optical and electrical signals requires separate probes, while their integration into a single device can result in the emergence of photogenerated electrical artifacts, affecting the quality of high-frequency neural recordings. Among the nontrivial strategies aimed at the realization of an implantable multifunctional interface, the integration of optical and electrical capabilities on a single, minimally invasive, tapered optical fiber probe has been recently demonstrated using fibertrodes.

View Article and Find Full Text PDF

Corrigendum to "Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases" [Redox Biol. 79 (2025) 103464].

Redox Biol

January 2025

Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!