Numerical investigations on bubble-induced jetting and shock wave focusing: application on a needle-free injection.

Proc Math Phys Eng Sci

Department of Mechanical Engineering and Aeronautics, School of Mathematics, Computer Science and Engineering, City University of London, Northampton Square EC1V 0HB, UK.

Published: February 2019

The formation of a liquid jet into air induced by the growth of a laser-generated bubble inside a needle-free device is numerically investigated by employing the compressible Navier-Stokes equations. The three co-existing phases (liquid, vapour and air) are assumed to be in thermal equilibrium. A transport equation for the gas mass fraction is solved in order to simulate the non-condensable gas. The homogeneous equilibrium model is used in order to account for the phase change process between liquid and vapour. Thermodynamic closure for all three phases is achieved by a barotropic Equation of State. Two-dimensional axisymmetric simulations are performed for a needle-free device for which experimental data are available and used for the validation of the developed model. The influence of the initial bubble pressure and the meniscus geometry on the jet velocity is examined by two different sets of studies. Based on the latter, a new meniscus design similar to shaped-charge jets is proposed, which offers a more focused and higher velocity jet compared to the conventional shape of the hemispherical gas-liquid interface. Preliminary calculations show that the developed jet can penetrate the skin and thus, such configurations can contribute towards a new needle-free design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405452PMC
http://dx.doi.org/10.1098/rspa.2018.0548DOI Listing

Publication Analysis

Top Keywords

needle-free device
8
liquid vapour
8
numerical investigations
4
investigations bubble-induced
4
bubble-induced jetting
4
jetting shock
4
shock wave
4
wave focusing
4
focusing application
4
needle-free
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!