smartPearls are a novel dermal delivery system based on mesoporous (pores 2-50 nm) particles, developed in 2014. Their pores can be loaded with active which is long-term stabilized in its amorphous state. The increased saturation solubility by the amorphous state leads to an increased dermal bioavailability of poorly soluble actives. To avoid sedimentation of the porous particles (3-50 µm) in dermal formulations, viscoelastic gels were developed using ι-carrageenan, polyacrylate and the viscoelastic Kühne salad dressing as a reference from food industry. Silica particles (company Grace/US, 50 and 150 µm) were loaded into the gels and long-term stability was assessed by a VIS sedimentation test. Furthermore, the gels were characterized by analytical centrifugation (LUMiSizer) to assess the critical rpm/g values, allowing to order them after their absolute viscoelastic stabilizing ability. Characterization was complemented by rotation rheology, amplitude sweep and a frequency sweep analysis for the determination of elastic and viscous moduli G' and G'' at varying conditions. Based on the throughout characterization, polymers can be selected to sufficiently stabilize dermal formulations even with large sized smartPearls - the prerequisite for using this delivery system in dermal products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2019.03.016DOI Listing

Publication Analysis

Top Keywords

dermal bioavailability
8
delivery system
8
amorphous state
8
dermal formulations
8
dermal
5
smartpearls dermal
4
bioavailability enhancement
4
enhancement long-term
4
long-term stabilization
4
stabilization suspensions
4

Similar Publications

Cyclovirobuxine D, a natural compound derived from the medicinal plant Buxus sinica, demonstrates a diverse array of therapeutic benefits, encompassing anti-arrhythmic properties, blood pressure regulation, neuronal protection, and anti-ischemic activity. However, its limited solubility hinders the bioavailability of current oral and injectable formulations, causing considerable adverse reactions and toxicity. In this investigation, we embarked on an unprecedented exploration of the skin penetration potential of cyclovirobuxine D utilizing chemical penetration enhancers and niosomes as innovative strategies to enhance its dermal absorption.

View Article and Find Full Text PDF

Nanocrystals in Dermal Drug Delivery: A Breakthrough for Enhanced Skin Penetration and Targeted Skin Disorder Treatments.

Pharmaceutics

December 2024

Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

One of the major challenges in dermal drug delivery is the adequate penetration of the active compound into the skin without causing any skin irritation and inflammation. Nanocrystals (NCs) are nanoscale particles, and their sizes are below 1000 nm. NCs are made up of drug particles only, which are used to improve the aqueous solubility and bioavailability of poorly water-soluble drugs.

View Article and Find Full Text PDF

The limited water solubility of active compounds remains a significant challenge for efficient dermal drug delivery, particularly for BCS class IV drugs such as curcumin. This study aimed to enhance curcumin's dermal penetration using two strategies: extracellular vesicles (EVs) and plantCrystals derived from soybeans. EVs were isolated using classical methods.

View Article and Find Full Text PDF

Development of cocrystals through crystal engineering is a viable strategy to formulate poorly water-soluble active pharmaceutical ingredients as stable crystalline solid forms with enhanced bioavailability. This study presents a controlled cocrystallization process by cooling for the 1:1 cocrystal of Ketoconazole, an antifungal class II drug with the Fumaric acid coformer. This was successfully set up following the meta-stable zone width determination in acetone-water 4:6 (/) and pure ethanol.

View Article and Find Full Text PDF

Lidocaine (LID), frequently used in dermal applications, is a nonpolar local anesthetic agent that is practically insoluble in water. The main aim of this study is to develop the nanosuspension formulation of LID using the design of experiments (DoE). The improved solubility and dissolution rate provided by nanosizing are expected to result in enhanced dermal bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!