Purpose: MR Current Density Imaging (MRCDI) involves weak current-injection into the head. The resulting magnetic field changes are measured by MRI. Stray fields pose major challenges since these can dominate the fields caused by tissue currents. We analyze the sources and influences of stray fields.
Methods: First, we supply validation data for a recently introduced MRCDI method with an unprecedented noise floor of ∼0.1 nT in vivo. Second, we assess the accuracy limit of the method and our corresponding cable current correction in phantoms ensuring high signal-to-noise ratio (SNR). Third, we simulate the influence of stray fields on current flow reconstructions for various realistic experimental set-ups. Fourth, we experimentally determine the physiological field variations. Finally, we explore the consequences of head positioning in an exemplary head coil, since off-center positioning provides space for limiting cable-induced fields.
Results: The cable correction method performs well except near the cables. Unless correcting for cable currents, the reconstructed current flow is easily misestimated by up to 45% for a realistic experimental set-up. Stray fields dominating the fields caused by tissue currents can occur, e.g. due to a wire segment 20 cm away from the imaged region, or due to a slight cable misalignment of 3°. The noise is increased by 40% due to physiological factors. Minor patient movements can cause field changes of ∼40 nT. Off-centered head positioning can locally reduce SNR by e.g. 30%.
Conclusions: Quantification of stray fields showed that MRCDI requires careful field correction. After cable correction, physiological noise is a limiting factor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2019.02.022 | DOI Listing |
Rev Sci Instrum
December 2024
662, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA.
Sensors (Basel)
November 2024
MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
Nat Commun
November 2024
Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, 68588-0299, USA.
Ferromagnets with high spin polarization are known to be valuable for spintronics-a research field that exploits the spin degree of freedom in information technologies. Recently, antiferromagnets have emerged as promising alternative materials for spintronics due to their stability against magnetic perturbations, absence of stray fields, and ultrafast dynamics. For antiferromagnets, however, the concept of spin polarization and its relevance to the measured electrical response are elusive due to nominally zero net magnetization.
View Article and Find Full Text PDFJ Magn Reson
December 2024
Institute of Smart Sensors, University of Stuttgart, Stuttgart, Germany; Center for Integrated Quantum Science and Technology (IQ(ST),), Stuttgart, Germany; Institute for Microelectronics Stuttgart (IMS CHIPS), Stuttgart, Germany.
In this paper, we introduce a compact, single-sided stray field sensor for NMR relaxometry applications. The sensor consists of four main components: the magnet, the RF coil, the spectrometer, and the translation stage. Our proposed magnet, an improved design of the Profile NMR-MOUSE, is designed for low weight, compactness, and magnetic field homogeneity, achieved through various shim strategies using a mixed genetic algorithm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!