Host defenses against pathogens are energetically expensive, leading ecological immunologists to postulate that they might participate in energetic trade-offs with other maintenance programs. However, the metabolic costs of immunity and the nature of physiologic trade-offs it engages are largely unknown. We report here that activation of immunity causes an energetic trade-off with the homeothermy (the stable maintenance of core temperature), resulting in hypometabolism and hypothermia. This immunity-induced physiologic trade-off was independent of sickness behaviors but required hematopoietic sensing of lipopolysaccharide (LPS) via the toll-like receptor 4 (TLR4). Metabolomics and genome-wide expression profiling revealed that distinct metabolic programs supported entry and recovery from the energy-conserving hypometabolic state. During bacterial infections, hypometabolic states, which could be elicited by competition for energy between maintenance programs or energy restriction, promoted disease tolerance. Together, our findings suggest that energy-conserving hypometabolic states, such as dormancy, might have evolved as a mechanism of tissue tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456449 | PMC |
http://dx.doi.org/10.1016/j.cell.2019.01.050 | DOI Listing |
iScience
January 2025
Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands.
Traditional classification by clinical phenotype or oxidative phosphorylation (OXPHOS) complex deficiencies often fails to clarify complex genotype-phenotype correlations in mitochondrial disease. A multimodal functional assessment may better reveal underlying disease patterns. Using imaging flow cytometry (IFC), we evaluated mitochondrial fragmentation, swelling, membrane potential, reactive oxygen species (ROS) production, and mitochondrial mass in fibroblasts from 31 mitochondrial disease patients.
View Article and Find Full Text PDFPLoS One
January 2025
Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, United States of America.
Background: Impaired brain glucose metabolism is a preclinical feature of neurodegenerative diseases such as Alzheimer's disease (AD). Infections may promote AD-related pathology. Therefore, we investigated the interplay between infections and APOE4, a strong genetic risk factor for AD.
View Article and Find Full Text PDFJ Vet Med Sci
December 2024
Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University.
J Transl Med
December 2024
Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.
Background: As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor tissue.
View Article and Find Full Text PDFNeurology
November 2024
From the Departments of Neurology (H.W., J.R.D., H.C., J.G.-R., K.A.J.), Psychology (M.M.M.), and Radiology (N.T.T.P., V.J.L., J.L.W.), Mayo Clinic, Rochester, MN; and Department of Neuroscience (Neuropathology) (D.W.D.), Mayo Clinic, Jacksonville, FL.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!