Development of a Highly Multiplexed SRM Assay for Biomarker Discovery in Formalin-Fixed Paraffin-Embedded Tissues.

Methods Mol Biol

Biomarkers, Bioinformatics and Omics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland.

Published: July 2019

The search for novel and clinically relevant biomarkers still represents a major clinical challenge and mass-spectrometry-based technologies are essential tools to help in this process. In this application, we demonstrate how selected reaction monitoring (SRM) can be applied in a highly multiplexed way to analyze formalin-fixed paraffin-embedded (FFPE) tissues. Such an assay can be used to analyze numerous samples for narrowing down a list of potential biomarkers to the most relevant candidates. The use of FFPE tissues is of high relevance in this context as large sample collections linked with valuable clinical information are available in hospitals around the world. Here we describe in detail how we proceeded to develop such an assay for 200 proteins in breast tumor FFPE tissues. We cover the selection of suitable peptides, which are different in FFPE compared to fresh frozen tissues and show how we deliberately biased our assay toward proteins with a high probability of being measurable in human clinical samples.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9164-8_13DOI Listing

Publication Analysis

Top Keywords

ffpe tissues
12
highly multiplexed
8
formalin-fixed paraffin-embedded
8
tissues
5
development highly
4
multiplexed srm
4
assay
4
srm assay
4
assay biomarker
4
biomarker discovery
4

Similar Publications

Spatial transcriptomics (ST) offers enormous potential to decipher the biological and pathological heterogeneity in precious archival cancer tissues. Traditionally, these tissues have rarely been used and only examined at a low throughput, most commonly by histopathological staining. ST adds thousands of times as many molecular features to histopathological images, but critical technical issues and limitations require more assessment of how ST performs on fixed archival tissues.

View Article and Find Full Text PDF

Formalin-fixed paraffin-embedded tissue (FFPET), which is the most widely used pathology archive, usually has low-quality DNA and RNA due to extensive nucleic acid crosslinking. RNA fluorescence in situ hybridization (RNA-FISH) has been increasingly utilized in research and clinical settings to diagnose disease pathology. In this study, the effect of RNA degradation over archival time on RNA-FISH signals in FFPET and fresh frozen tissue (FFT) was systematically assessed.

View Article and Find Full Text PDF

Archived clinical formalin-fixed paraffin-embedded tissue (FFPE) is valuable for the study of tumor epigenetics. Although protocol of chromatin immunoprecipitation coupled with next generation sequencing (NGS) (ChIP-seq) using FFPE samples has been established, removal of interference signals from non-target cell components in the samples is still needed. In this study, the protocol of ChIP-seq with purified cells from FFPE lymphoid tissue of nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI) after fluorescence-activated cell sorting (FACS) was established and optimized.

View Article and Find Full Text PDF

TET2-mediated 5-hydroxymethylcytosine of TXNIP promotes cell cycle arrest in systemic anaplastic large cell lymphoma.

Clin Epigenetics

January 2025

Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.

Background: 5-Hydroxymethylcytosine (5hmC) modification represents a significant epigenetic modification within DNA, playing a pivotal role in a range of biological processes associated with various types of cancer. The role of 5hmC in systemic anaplastic large cell lymphoma (ALCL) has not been thoroughly investigated. This study aims to examine the function of 5hmC in the advancement of ALCL.

View Article and Find Full Text PDF

Characterizing the expression of novel targets in normal and diseased tissues is a fundamental component of a target validation data package. Often these targets are presented to the pathology team for assessment with bulk or single-cell RNAseq data and limited to no spatial tissue expression data. hybridization to detect mRNA (RNAscope) is a valuable tool to (1) identify cells that may express the target protein and to corroborate protein expression during immunohistochemical (IHC) assay development or (2) to use as surrogate for single-cell expression IHC when antibodies are not available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!