A Two-Step GRIN Lens Coating for In Vivo Brain Imaging.

Neurosci Bull

Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.

Published: June 2019

The complex spatial and temporal organization of neural activity in the brain is important for information-processing that guides behavior. Hence, revealing the real-time neural dynamics in freely-moving animals is fundamental to elucidating brain function. Miniature fluorescence microscopes have been developed to fulfil this requirement. With the help of GRadient INdex (GRIN) lenses that relay optical images from deep brain regions to the surface, investigators can visualize neural activity during behavioral tasks in freely-moving animals. However, the application of GRIN lenses to deep brain imaging is severely limited by their availability. Here, we describe a protocol for GRIN lens coating that ensures successful long-term intravital imaging with commercially-available GRIN lenses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527646PMC
http://dx.doi.org/10.1007/s12264-019-00356-xDOI Listing

Publication Analysis

Top Keywords

grin lenses
12
grin lens
8
lens coating
8
brain imaging
8
neural activity
8
freely-moving animals
8
deep brain
8
brain
5
two-step grin
4
coating vivo
4

Similar Publications

[Deep brain imaging by using GRIN lens].

Nihon Yakurigaku Zasshi

January 2025

Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences.

Elucidating the neural mechanisms governing changes in individual animal behavior is a key goal in neuroscience. Such research has important implications for behavioral pharmacology and could lead to the development of treatments for psychiatric and neurological disorders. Given that the brain likely represents vast amounts of information through the combined activity of multiple neurons, studying these mechanisms requires the simultaneous recording of many neurons.

View Article and Find Full Text PDF

Optical methods for studying the brain offer powerful approaches for understanding how neural activity underlies complex behavior. These methods typically rely on genetically encoded sensors and actuators to monitor and control neural activity. For microendoscopic calcium imaging, injection of a virus followed by implantation of a lens probe is required to express a calcium sensor and enable optical access to the target brain region.

View Article and Find Full Text PDF

Background: As a key element of ocular accommodation, the inherent mechanical stiffness gradient and the gradient refractive index (GRIN) of the crystalline lens determine its deformability and optical functionality. Quantifying the GRIN profile and deformation characteristics in the lens has the potential to improve the diagnosis and follow-up of lenticular disorders and guide refractive interventions in the future.

Methods: Here, we present a type of optical coherence elastography able to examine the mechanical characteristics of the human crystalline lens and the GRIN distribution in vivo.

View Article and Find Full Text PDF

Systems that can image in three dimensions at cellular resolution and across different locations within an organism may enable insights into complex biological processes, such as immune responses, for which a single location measurement may be insufficient. In this Letter, we describe an in vivo two-site imaging probe (TIP) that can simultaneously image two anatomic sites with a maximum separation of a few centimeters. The TIP consists of two identical bendable graded index (GRIN) lenses and is demonstrated by a two-photon two-color fluorescence imaging system.

View Article and Find Full Text PDF

Chalcogenide glass has achieved great success in manufacturing axial-type infrared gradient refractive index (IR-GRIN) lenses. However, studies on radial-type IR-GRIN lenses, which are more ideal for optical design, remain rare. The present study introduces what we believe to be a new method for preparing radial IR-GRIN lens by creating high refractive index () InS nanocrystals within a 65GeS-25InS-10CsCl (GIC, in molar percentage) glass matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!