Strong metal-support interaction (SMSI) has been widely used to improve catalytic performance and to identify reaction mechanisms. We report that single Pt atoms anchored onto hollow nanocarbon (h-NC) edges possess strong metal-carbon interaction, which significantly modifies the catalytic behavior of the anchored Pt atoms for selective hydrogenation reactions. The strong Pt-C bonding not only stabilizes single Pt atoms but also modifies their electronic structure, tunes their adsorption properties, and enhances activation of reactants. The fabricated Pt/h-NC single-atom catalysts (SACs) demonstrated excellent activity for hydrogenation of 3-nitrostyrene to 3-vinylaniline with a turnover number >31,000/h, 20 times higher than that of the best catalyst for such selective hydrogenation reactions reported in the literature. The strategy to strongly anchor Pt atoms by edge carbon atoms of h-NCs is general and can be extended to construct strongly anchored metal atoms, via SMSI, onto surfaces of various types of support materials to develop robust SACs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409412PMC
http://dx.doi.org/10.1016/j.isci.2019.02.016DOI Listing

Publication Analysis

Top Keywords

strong metal-carbon
8
metal-carbon interaction
8
single atoms
8
selective hydrogenation
8
hydrogenation reactions
8
atoms
7
nanocarbon-edge-anchored high-density
4
high-density atoms
4
atoms 3-nitrostyrene
4
hydrogenation
4

Similar Publications

The Synergetic Effect of Metal-Loaded Electrospun Carbon Fibers for Photothermal Conversion.

ACS Appl Mater Interfaces

October 2024

State Key Laboratory of Chemical Resources Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

With the increasing demand for energy and worsening environmental issues, the application of photothermal materials has been widely explored due to their high energy conversion capabilities and environmental friendliness. In this work, metal-carbon fiber composites were prepared and subjected to photothermal and water evaporation performance tests alongside pure metals and pyrolytic phenolic resin materials. The results show that the addition of metals effectively improved the photothermal efficiency by narrowing the molecular energy gaps of the materials, indicating a strong synergistic enhancement effect between metals and carbon materials.

View Article and Find Full Text PDF

Currently, inhomogeneous distribution of Zn on the surface of the Zn anode is still the essential reason for dendrite formation and unsatisfactory stability of zinc ion batteries. Given the merits of strong interaction between Sn and Zn, as well as a low nucleation barrier during Zn deposition, the combination of metallic Sn with carbon material is expected to improve the deposition of zinc ions and inhibit the growth of zinc dendrites by guiding the homogeneous plating/stripping of zinc on the electrode surface. In this article, zincophilic Sn nanoparticles with low nucleation barriers and strong interaction with Zn were embedded into 3D N-doped carbon nanofibers using a simple electrostatic spinning technique.

View Article and Find Full Text PDF

Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions.

View Article and Find Full Text PDF

-Heterocyclic carbenes (NHCs) have emerged as promising ligands for stabilizing metallic complexes, nanoclusters, nanoparticles (NPs) and surfaces. The carbon-metal bond between NHCs and metal atoms plays a crucial role in determining the resulting material's stability, reactivity, function, and electronic properties. Using Raman spectroscopy coupled with density functional theory calculations, we investigate the nature of carbon-metal bonding in NHC-silver and NHC-gold complexes as well as their corresponding NPs.

View Article and Find Full Text PDF

Tuning the electronic metal-carbon interactions in Lignin-based carbon-supported ruthenium-based electrocatalysts for enhanced hydrogen evolution reactions.

J Colloid Interface Sci

June 2024

MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China. Electronic address:

Ruthenium (Ru) nanoparticles dispersed on carbon support are promising electrocatalysts for hydrogen evolution reaction (HER) due to strong electronic metal-carbon interactions (EMCIs). Defects engineering in carbon supports is an effective strategy to adjust EMCIs. We prepared nitrogen/sulfur co-doped carbon supported Ru nanoparticles (Ru@N/S-LC) using sodium lignosulfonate and urea as feedstocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!