Dental Pulp Stem Cell Transplantation with 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside Accelerates Alveolar Bone Regeneration in Rats.

J Endod

School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan. Electronic address:

Published: April 2019

Introduction: Although the therapeutic potential of human dental pulp stem cells (hDPSCs) has been studied for bone regeneration, the therapeutic efficiency needs further consideration and examinations for clinical applications. Thus, the aims of this study were to evaluate the effect of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) on the osteogenic differentiation of hDPSCs and to examine the therapeutic efficiency of the THSG-enhanced osseous potential of hDPSCs in alveolar bony defects of rats.

Methods: Expressions of osteogenic messenger RNAs (including ALP, RUNX2, BGLAP, and AMBN) were examined by quantitative real-time polymerase chain reaction. Alizarin red S staining was conducted to analyze THSG-induced mineralization of hDPSCs. To investigate the regenerative effects of THSG-treated hDPSCs on dental alveolar bone, bony defects were created in male Sprague-Dawley rats. Defects were treated with Matrigel (Corning Inc, Corning, NY), hDPSCs, or hDPSCs + THSG. After 2 weeks, defect healing was evaluated by micro-computed tomographic and histologic analyses.

Results: In the cell model, THSG induced osteogenesis-associated genes (ALP, RUNX2, and BGLAP) and an enamel-related gene (AMBN), resulting in mineralization as detected by alizarin red S staining after 2 weeks of treatment. In the animal model, THSG increased all parameters of bone formation (the relative bone volume, trabecular thickness, trabecular number, and trabecular separation) in alveolar bony defects of rats. THSG not only improved the quality of newly formed bone but also the quantity of new bone.

Conclusions: These results showed important findings in revealing the THSG-enhanced osteogenic differentiation of hDPSCs and THSG-facilitated bone regeneration, which may provide an alternative option for cell-based regenerative therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2018.12.019DOI Listing

Publication Analysis

Top Keywords

bone regeneration
12
bony defects
12
dental pulp
8
pulp stem
8
alveolar bone
8
hdpscs
8
therapeutic efficiency
8
osteogenic differentiation
8
differentiation hdpscs
8
alveolar bony
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!