Background: Toxin A (TcdA), toxin B (TcdB), and binary toxin (CDT) produced by Clostridium difficile (CD) are thought to play a key role in inducing diarrhea. The aim of this study was to investigate the individual and combined roles of CD toxins in inducing enterotoxic and cytotoxic effect.

Methods: Ion secretion and epithelial damage were evaluated in the Ussing chambers as measure of enterotoxic or cytotoxic effect, respectively, in human-derived intestinal cells.

Results: When added to the mucosal side of Caco-2 cells, TcdB, but not TcdA, induced ion secretion and its effects increased in the presence of TcdA. CDT also induced ion secretion when added to either the mucosal or serosal compartment. Serosal addition of TcdB induced epithelial damage consistent with its cytotoxic effect. However, mucosal addition of TcdB had similar effects, but only in the presence of TcdA. CDT induced epithelial damage when added to the serosal side of cell monolayers, and this was associated with a late onset but prolonged effect. All data were replicated using human colon biopsies.

Conclusions: These data indicate that CD, through the combined and direct activity of its three toxins, induces integrated and synergic enterotoxic and cytotoxic effects on the intestinal epithelium.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41390-019-0365-0DOI Listing

Publication Analysis

Top Keywords

ion secretion
16
enterotoxic cytotoxic
12
epithelial damage
12
clostridium difficile
8
induced ion
8
presence tcda
8
tcda cdt
8
cdt induced
8
addition tcdb
8
induced epithelial
8

Similar Publications

Metabolomics provide a promising tool for understanding dementia pathogenesis and identifying novel biomarkers. This study aimed to identify amino acid biomarkers for Alzheimer's Disease (AD) and Vascular Dementia (VD). By amino acid metabolomics, the concentrations of amino acids were determined in the serum of AD and VD patients as well as age-matched healthy controls.

View Article and Find Full Text PDF

Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.

View Article and Find Full Text PDF

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

Two TAL Effectors of Xanthomonas citri pv. malvacearum Induce Water Soaking by Activating GhSWEET14 Genes in Cotton.

Mol Plant Pathol

January 2025

Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.

Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.

View Article and Find Full Text PDF

Porcine deltacoronavirus (PDCoV), also known as HKU15, is a swine enteropathogenic virus that is believed to have originated in birds. PDCoV belongs to the genus Deltacoronavirus (DCoV), the members of which have mostly been identified in diverse avian species. We recently reported that chicken or porcine aminopeptidase N (APN), the major cellular receptor for PDCoV, can mediate cellular entry via three pseudotyped retroviruses displaying spike proteins from three avian DCoVs (HKU11, HKU13, and HKU17).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!