Gully erosion is one of the most effective drivers of sediment removal and runoff from highland areas to valley floors and stable channels, where continued off-site effects of water erosion occur. Gully initiation and development is a natural process that greatly impacts natural resources, agricultural activities, and environmental quality as it promotes land and water degradation, ecosystem disruption, and intensification of hazards. In this research, an attempt is made to produce gully erosion susceptibility maps for the management of hazard-prone areas in the Pathro River Basin of India using four well-known machine learning models, namely, multivariate additive regression splines (MARS), flexible discriminant analysis (FDA), random forest (RF), and support vector machine (SVM). To support this effort, observations from 174 gully erosion sites were made using field surveys. Of the 174 observations, 70% were randomly split into a training data set to build susceptibility models and the remaining 30% were used to validate the newly built models. Twelve gully erosion conditioning factors were assessed to find the areas most susceptible to gully erosion. The predisposing factors were slope gradient, altitude, plan curvature, slope aspect, land use, slope length (LS), topographical wetness index (TWI), drainage density, soil type, distance from the river, distance from the lineament, and distance from the road. Finally, the results from the four applied models were validated with the help of ROC (Receiver Operating Characteristics) curves. The AUC value for the RF model was calculated to be 96.2%, whereas for those for the FDA, MARS, and SVM models were 84.2%, 91.4%, and 88.3%, respectively. The AUC results indicated that the random forest model had the highest prediction accuracy, followed by the MARS, SVM, and FDA models. However, it could be concluded that all the machine learning models performed well according to their prediction accuracy. The produced GESMs can be very useful for land managers and policy makers as they can be used to initiate remedial measures and erosion hazard mitigation in prioritized areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.02.436DOI Listing

Publication Analysis

Top Keywords

gully erosion
24
machine learning
12
erosion susceptibility
8
management hazard-prone
8
hazard-prone areas
8
learning models
8
random forest
8
mars svm
8
prediction accuracy
8
gully
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!