Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rainbow trout (Oncorhynchus mykiss) are a cold-water salmonid species that is highly susceptible to heat stress. Summer temperature stress is a common issue in trout aquaculture. To better understand the molecular mechanisms of the heat-stress response in the trout, we used label-free quantitative proteome techniques to identify differentially expressed proteins in the livers of rainbow trout exposed to heat stress. We identified 3362 proteins and 152 differentially expressed proteins (p < 0.05; fold-change >2). Of these, 37 were uniquely expressed in the heat-stress group and 35 were uniquely expressed in the control group. In addition, 42 proteins were significantly upregulated (fold-change >2) and 38 proteins were significantly downregulated (fold-change >2). GO (Gene Ontology) analysis indicated that these differentially expressed proteins were primarily expressed in the nucleus, extracellular matrix, and cytoplasm, and were associated with a variety of functions, including protein binding/bridging and enzyme facilitation. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of the differentially expressed proteins showed that, during high temperature stress, many biological processes were extensively altered, particularly the estrogen signaling pathway, the complement and coagulation cascades, and the platelet activation pathway. Our study focused on the identification of a systematic approach for the characterization of regulatory networks. Our results provide a framework for further studies of the heat-stress response in fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2019.02.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!