Traumatic brain injury (TBI) is a complex injury that can cause severe disabilities and even death. TBI can induce secondary injury cascades, including but not limited to endoplasmic reticulum (ER) stress, apoptosis and autophagy. Although the investigators has previously shown that salubrinal, the selective phosphatase inhibitor of p-eIF2α, ameliorated neurologic deficits in murine TBI model, the neuroprotective mechanisms of salubrinal need further research to warrant the preclinical value. This study was undertaken to characterize the effects of salubrinal on cell death and neurological outcomes following TBI in mice and the potential mechanisms. In the current study, ER stress-related proteins including p-eIF2α, GRP78 and CHOP showed peak expressions both in the cortex and hippocampus from day 2 to day 3 after TBI, indicating ER stress was activated in our TBI model. Immunofluorescence staining showed that CHOP co-located NeuN-positive neuron, GFAP-positive astrocyte, Iba-1-positive microglia, CD31-positive vascular endothelial cell and PDGFR-β-positive pericyte in the cortex on day 2 after TBI, and these cells mentioned above constitute the neurovascular unit (NVU). We also found TBI-induced plasmalemma permeability, motor dysfunction, spatial learning and memory deficits and brain lesion volume were alleviated by continuous intraperitoneal administration of salubrinal post TBI. To investigate the underlying mechanisms further, we determined that salubrinal suppressed the expression of ER stress, autophagy and apoptosis related proteins on day 2 after TBI. In addition, salubrinal administration decreased the number of CHOP+/TUNEL+ and CHOP+/LC3+ cells on day 2 after TBI, detected by immunofluorescence. In conclusion, these data imply that salubrinal treatment improves morphological and functional outcomes caused by TBI in mice and these neuroprotective effects may be associated with inhibiting apoptosis, at least in part by suppressing ER stress-autophagy pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nlm.2019.03.002 | DOI Listing |
Crit Care
January 2025
Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.
View Article and Find Full Text PDFClin Exp Emerg Med
January 2025
Department of Emergency Medicine, Jeju National University Hospital, Jeju, Korea.
Objective: Traumatic brain injury (TBI) often occurs alongside injuries to other body regions, worsening patient outcomes. This study aimed to evaluate the impact of concomitant injuries on clinical outcomes in patients with isolated versus non-isolated TBI.
Method: A retrospective cross-sectional analysis was conducted using data from the Emergency Department-based Injury In-depth Surveillance System (EDIIS), encompassing 180,058 TBI patients admitted to 23 tertiary hospitals from January 1, 2020, to December 31, 2022.
F1000Res
January 2025
Pathology, Faculty of Veterinary, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia.
Background: Traumatic brain injury (TBI) is a change in brain function or evidence of brain pathology caused by external mechanical forces. Brain Derived Neurotrophic Factor (BDNF) is a neurotropin that functions as a neuron protective. Nigella sativa L is reported to have an antioxidant effect, administration of Nigella Sativa L to rats treated with ischemia-reperfusion brain injury.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Emergency, Shaoxing People's Hospital, Shaoxing, China.
Objective: The aim of this study is to assess the comparative effectiveness of transorbital sonography (TOS) and the pupillary penlight visual assessment method in patients with traumatic brain injury (TBI) and periorbital hematoma.
Methods: A total of 140 patients with traumatic brain injury (TBI), meeting the inclusion and exclusion criteria, were selected from a tertiary hospital in Zhejiang Province between January 2022 and December 2023. Pupillary function in all patients was assessed using both TOS and the pupillary penlight visual assessment method on the first, third, and seventh day after admission.
Am J Speech Lang Pathol
January 2025
Good Samaritan Medical Center Foundation, Lafayette, CO.
Purpose: The aim of this study was to gauge the impacts of cognitive empathy training experiential learning on traumatic brain injury (TBI) knowledge, awareness, confidence, and empathy in a pilot study of speech-language pathology graduate students.
Method: A descriptive quasi-experimental convergent parallel mixed methods design intervention pilot study (QUAL + QUANT) was conducted with a diverse convenience sample of 19 first- and second-year speech-language pathology graduate students who engaged in a half-day TBI point-of-view simulation. The simulation was co-constructed through a participatory design with those living with TBI based on Kolb's experiential learning model and followed the recommendations for point-of-view simulation ethics.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!