Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chromatin remodeler proteins exert an important function in promoting dynamic modifications in the chromatin architecture, performing a central role in regulating gene transcription. Deregulation of these molecular machines may lead to striking perturbations in normal cell function. The CHD7 gene is a member of the chromodomain helicase DNA-binding family and, when mutated, has been shown to be the cause of the CHARGE syndrome, a severe developmental human disorder. Moreover, CHD7 has been described to be essential for neural stem cells and it is also highly expressed or mutated in a number of human cancers. However, its potential role in glioblastoma has not yet been tested. Here, we show that CHD7 is up-regulated in human glioma tissues and we demonstrate that CHD7 knockout (KO) in LN-229 glioblastoma cells suppresses anchorage-independent growth and spheroid invasion in vitro. Additionally, CHD7 KO impairs tumor growth and increases overall survival in an orthotopic mouse xenograft model. Conversely, ectopic overexpression of CHD7 in LN-428 and A172 glioblastoma cell lines increases cell motility and invasiveness in vitro and promotes LN-428 tumor growth in vivo. Finally, RNA-seq analysis revealed that CHD7 modulates a specific transcriptional signature of invasion-related target genes. Further studies should explore clinical-translational implications for glioblastoma treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408455 | PMC |
http://dx.doi.org/10.1038/s41598-019-39564-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!