The purpose of this work was to evaluate the physicochemical properties, the cytotoxicity and in vivo biocompatibility of MTA Repair HP (MTA HP) and White MTA (WMTA). The setting time, flow, radiopacity and water solubility were assessed. To the cytotoxicity assay, primary human osteoblast cells were exposed to several dilutions of both materials eluates. MTT assay, apoptosis assay and cell adhesion assay were performed. The in vivo biocompatibility was evaluated through histological analysis using different staining techniques. No differences were observed between MTA HP and WMTA for setting time, radiopacity, solubility and water absorption (P > 0.05). However, MTA HP showed a significantly higher flow when compared to WMTA (P < 0.05). Cell viability results revealed that the extracts of WMTA and MTA HP promoted the viability of osteoblasts. After incubation of cells with the endodontic cement extracts, the percentage of apoptotic or necrotic cells was very low (<3%). Furthermore, SEM results showed a high degree of cell proliferation and adhesion on both groups. MTA HP showed similar in vivo biocompatibility to the WMTA and the control group in all time-points. The MTA HP presented adequate physicochemical and biological properties with improved flow ability when compared to WMTA. Such improved flow ability may be a result of the addition of a plasticizing agent and should be related to an improvement in the handling of MTA HP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408552PMC
http://dx.doi.org/10.1038/s41598-019-40365-4DOI Listing

Publication Analysis

Top Keywords

vivo biocompatibility
12
cytotoxicity vivo
8
mta wmta
8
wmta setting
8
setting time
8
mta
5
physicochemical cytotoxicity
4
biocompatibility high-plasticity
4
high-plasticity calcium-silicate
4
calcium-silicate based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!