Over the last two decades, the number of gene/protein sequences gleaned from sequencing projects of individual genomes and environmental DNA has grown exponentially. Only a tiny fraction of these predicted proteins has been experimentally characterized, and the function of most proteins remains hypothetical or only predicted based on sequence similarity. Despite the development of postgenomic methods, such as transcriptomics, proteomics, and metabolomics, the assignment of function to protein sequences remains one of the main challenges in modern biology. As in all classes of proteins, the growing number of predicted carbohydrate-active enzymes (CAZymes) has not been accompanied by a systematic and accurate attribution of function. Taking advantage of the CAZy database, which groups CAZymes into families and subfamilies based on amino acid similarities, we recombinantly produced 564 proteins selected from subfamilies without any biochemically characterized representatives, from distant relatives of characterized enzymes and from nonclassified proteins that show little similarity with known CAZymes. Screening these proteins for activity on a wide collection of carbohydrate substrates led to the discovery of 13 CAZyme families (two of which were also discovered by others during the course of our work), revealed three previously unknown substrate specificities, and assigned a function to 25 subfamilies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442616 | PMC |
http://dx.doi.org/10.1073/pnas.1815791116 | DOI Listing |
J Genomics
January 2025
Université de Lorraine, INRAE, UMR 1136 Interactions Arbres/Microorganismes, 54280, Champenoux, France.
The earthball , an ectomycorrhizal basidiomycete belonging to the Sclerodermataceae family, serves as a significant mutualistic tree symbiont globally. Originally, two genetically sequenced strains of this genus were obtained from fruiting bodies collected under chestnut trees (). These strains were utilized to establish ectomycorrhizal roots of chestnut seedlings.
View Article and Find Full Text PDFJ Vet Res
December 2024
Department of Life Science and Engineering, Foshan University, 52800 Foshan, China.
Introduction: (MG) infection is a primary cause of chronic respiratory disease in poultry, threatening the economic viability of China's goose-farming industry. This study investigated the pathogenicity and drug resistance of an MG strain isolated from geese and whole-genome sequenced the strain.
Material And Methods: A strain designated MG-GD01/22 was isolated from the air-sac tissues of five geese with chronic respiratory disease on a Guangdong goose farm.
Biotechnol Biofuels Bioprod
January 2025
Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy.
Background: Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand.
strains S3W10 and SS15, isolated from shrimp ponds, exhibit potential probiotic benefits for aquaculture. In this study, the genomic features of S3W10 and SS15 were thoroughly characterized to evaluate their probiotic properties and safety for aquaculture use. The genomes of S3W10 and SS15 consist of 130 and 74 contigs, with sizes of 4.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.
The gut microbiota plays an important role in the digestion, absorption, and metabolism of nutrients, as well as in the immunity, health, and behavior of donkeys. While reference genomes and gut microbial gene catalogs have been helpful in understanding the composition of the donkey, there is still a significant gap in sequencing and understanding the functional aspects of donkey gut microbial genomes. In this study, we analyzed metagenomic sequencing data from 26 donkeys' gut samples and successfully assembled 844 microbial metagenome-assembled genomes (MAGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!