Nanoscale multipoint structure-function analysis is essential for deciphering the complexity of multiscale biological and physical systems. Atomic force microscopy (AFM) allows nanoscale structure-function imaging in various operating environments and can be integrated seamlessly with disparate probe-based sensing and manipulation technologies. Conventional AFMs only permit sequential single-point analysis; widespread adoption of array AFMs for simultaneous multipoint study is challenging owing to the intrinsic limitations of existing technological approaches. Here, we describe a prototype dispersive optics-based array AFM capable of simultaneously monitoring multiple probe-sample interactions. A single supercontinuum laser beam is utilized to spatially and spectrally map multiple cantilevers, to isolate and record beam deflection from individual cantilevers using distinct wavelength selection. This design provides a remarkably simplified yet effective solution to overcome the optical cross-talk while maintaining subnanometer sensitivity and compatibility with probe-based sensors. We demonstrate the versatility and robustness of our system on parallel multiparametric imaging at multiscale levels ranging from surface morphology to hydrophobicity and electric potential mapping in both air and liquid, mechanical wave propagation in polymeric films, and the dynamics of living cells. This multiparametric, multiscale approach provides opportunities for studying the emergent properties of atomic-scale mechanical and physicochemical interactions in a wide range of physical and biological networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442637 | PMC |
http://dx.doi.org/10.1073/pnas.1813518116 | DOI Listing |
Heliyon
January 2025
Department of Materials Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran.
AISI 316L stainless steel is extensively used in various fields, including medicine. In this study, in order to improve antibacterial properties, reduce elastic modulus, increase hydrophilicity and delay corrosion on the surface of AISI 316L stainless steel pieces for biomedical applications, zinc and magnesium elements were used for coating. Zn monolayer, Zn-Mg bilayer, and Zn-Mg-Zn triple coatings were deposited on AISI 316L substrates using the thermal evaporation method.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Food Engineering Technologies, Faculty of Technical Engineering, Aleppo University, Syria.
The objective of this study was to extract and characterize nanocellulose from sesame husks, which are typically discarded as waste by sesame processing facilities. However, these husks are rich in cellulose, presenting a valuable potential source for nanocellulose. Sesame husk cellulose (SHC) was initially isolated through a multi-step process that removed oil, hemicellulose, and lignin.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400044, P. R. China.
Decellularized artificial blood vessels prepared using physical and chemical methods often exhibit limitations, including poor mechanical performance, susceptibility to inflammation and calcification, and reduced patency. Cross-linking techniques can enhance the stiffness, as well as anti-inflammatory and anti-calcification properties of decellularized vessels. However, conventional cross-linking methods fail to effectively alleviate residual stress post-decellularization, which significantly impacts the patency and vascular remodeling following the implantation of artificial vessels.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, School of Chemical Engineering and Technology, Yaguan Road #135, Jinnan District, Tianjin 300354, P. R. China, CHINA.
In this study, we developed new chiral hybrid perovskites, (R/S-MBA)(GA)PbI4, by incorporating achiral guanidinium (GA+) and chiral R/S-methylbenzylammonium (R/S-MBA+) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D.
View Article and Find Full Text PDFMicron
December 2024
School of Sciences, European University Cyprus, Nicosia 2404, Cyprus. Electronic address:
Atomic Force Microscopy (AFM) nanoindentation is the most effective method for determining the mechanical properties of soft biological materials and biomaterials at the nanoscale, with significant applications in many areas, including cancer diagnosis. However, a major drawback of this method is the complexity of the experimental procedure and data processing, which requires several calibration steps.To avoid this complexity, the AFM tip is usually approximated as a perfect cone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!