Methods to study SUMO dynamics in yeast.

Methods Enzymol

Institute for Genetics, Center of Molecular Biosciences, University of Cologne, Cologne, Germany. Electronic address:

Published: November 2019

Covalent modification of proteins with the small ubiquitin-related modifier (SUMO) is found in all eukaryotes and is involved in many important processes. SUMO attachment may change interaction properties, subcellular localization, or stability of a modified protein. Usually, only a small fraction of a protein is modified at a given time because sumoylation is a highly dynamic process. The sumoylated state of a protein is controlled by the activity of the sumoylation enzymes that promote either their mono- or poly-sumoylation (SUMO chain formation), by SUMO proteases that reverse these modifications, and by SUMO-targeted ubiquitin ligases (STUbL, ULS) that mediate their degradation by the proteasome. While some organisms, such as humans, express multiple isoforms, budding yeast SUMO is encoded by a single and essential gene termed SMT3. The analysis of the simpler SUMO system in budding yeast has been instrumental in the identification of enzymes acting on this modification and controlling its dynamics. Sumoylation of proteins changes dramatically during the cell division cycle and under various stress conditions. Here we summarize various approaches that employ Saccharomyces cerevisiae as a model system to study the dynamics of sumoylation and how it is controlled.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2018.12.026DOI Listing

Publication Analysis

Top Keywords

budding yeast
8
dynamics sumoylation
8
sumo
7
methods study
4
study sumo
4
sumo dynamics
4
dynamics yeast
4
yeast covalent
4
covalent modification
4
modification proteins
4

Similar Publications

Cytoophidium complexes resonate with cell fates.

Cell Mol Life Sci

January 2025

School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

Metabolism is a fundamental characteristic of life. In 2010, we discovered that the metabolic enzyme CTP synthase (CTPS) can assemble a snake like structure inside cells, which we call the cytoophidium. Including CTPS, an increasing number of metabolic enzymes have been found to form cytoophidia in cells.

View Article and Find Full Text PDF

Background: The rise of antibiotic-resistant pathogens has intensified the search for novel antimicrobial agents. This study aimed to isolate from local soil samples and evaluate its antimicrobial properties, along with optimizing the production of bioactive compounds.

Methods: Soil samples were collected from local regions, processed, and analysed for Streptomyces strains isolation using morphological characteristics and molecular identification through 16S rRNA gene PCR assay.

View Article and Find Full Text PDF

Background: The epidemiology of vulvovaginal candidiasis (VVC) in Greece remains poorly reported and outdated.

Objectives: We therefore conducted a 2-year retrospective survey to assess the epidemiological aspects of the infection among symptomatic Greek patients.

Patients/methods: High vaginal swab samples were collected from adult women with clinically suspected VVC attending a private diagnostic laboratory in Athens.

View Article and Find Full Text PDF

Heterologous Biosynthesis of Terpenoids in Saccharomyces cerevisiae.

Biotechnol J

January 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.

Terpenoids are widely distributed in nature and have various applications in healthcare products, pharmaceuticals, and fragrances. Despite the significant potential that terpenoids possess, traditional production methods, such as plant extraction and chemical synthesis, face challenges in meeting current market demand. With the advancement of synthetic biology and metabolic engineering, it becomes feasible to construct efficient microbial cell factories for large-scale production of terpenoids.

View Article and Find Full Text PDF

Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome.

Nat Commun

January 2025

School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.

The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Saccharomyces cerevisiae chromosome synXVI of the Sc2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!