The influence of secondary electrons on radiation damage of biomolecules in water was studied by fast heavy-ion irradiation of biomolecular solutions. Water microdroplets containing the amino acid glycine under vacuum were irradiated by fast carbon projectiles with energies of 0.8-8.0 MeV. A variety of fragments from the droplets were observed by time-of-flight secondary-ion mass spectrometry: methylene amine cation and formate anion originating from the cleavage of C-C bonds, cyanide anion generated by cleavage of multiple bonds, and protonated and deprotonated glycine. The dependence of the yield of each fragment on projectile energy was examined; different behavior was observed for positive and negative fragments. Considering that biomolecular fragmentation may be induced by secondary electrons ejected from the water molecules surrounding biomolecules, we calculated the cross section for ejection of secondary electrons from liquid water. We found that the formation of both positive and negative glycine fragment ions correlated with the predicted emission of secondary electrons at different projectile energies. The formation of [Gly-H] fragments, typical for gas phase dissociative electron attachment to amino acids, is shown to be caused by electrons from the low-energy part of the secondary electron distribution.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5081883DOI Listing

Publication Analysis

Top Keywords

secondary electrons
16
biomolecular fragmentation
8
fast heavy-ion
8
heavy-ion irradiation
8
positive negative
8
secondary
6
electrons
5
secondary electron-induced
4
electron-induced biomolecular
4
fragmentation fast
4

Similar Publications

Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.

View Article and Find Full Text PDF

Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.

View Article and Find Full Text PDF

Enhanced tetracycline degradation using carbonized PEI-grafted lignin microspheres supported Fe-loading catalyst across a wide pH range in Fenton-like reactions.

Int J Biol Macromol

December 2024

School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China. Electronic address:

Traditional homogeneous Fenton systems face limitations, including a narrow pH range, potential secondary pollution, and poor repeatability. In this study, these bottlenecks in tetracycline wastewater treatment were addressed with using carbonized porous polyethyleneimine-grafted lignin microspheres (PLMs) supported Fe-loading catalysts (PLMs/Fe-C). An optimized PLMs/Fe-C catalyst under specific conditions (carbonization temperature: 350 °C, PLMs: Fe = 1:1, and alkali lignin: PEI = 1:4) was developed, which proved to be an efficient Fenton-like catalyst for tetracycline (TC) degradation.

View Article and Find Full Text PDF

The earliest named stromatolite Cryptozoon Hall, 1884 (Late Cambrian, ca. 490 Ma, eastern New York State), was recently re-interpreted as an interlayered microbial mat and non-spiculate (keratosan) sponge deposit. This "classic stromatolite" is prominent in a fundamental debate concerning the significance or even existence of non-spiculate sponges in carbonate rocks from the Neoproterozoic (Tonian) onwards.

View Article and Find Full Text PDF

Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide with heterogeneous histopathological phenotypes. Although IgAN with membranoproliferative glomerulonephritis (MPGN)-like features has been reported in children and adults, treatment strategies for this rare IgAN subtype have not been established. Here, we present the case of a 56-year-old man with no history of kidney disease who initially presented with nephrotic syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!