The influence of secondary electrons on radiation damage of biomolecules in water was studied by fast heavy-ion irradiation of biomolecular solutions. Water microdroplets containing the amino acid glycine under vacuum were irradiated by fast carbon projectiles with energies of 0.8-8.0 MeV. A variety of fragments from the droplets were observed by time-of-flight secondary-ion mass spectrometry: methylene amine cation and formate anion originating from the cleavage of C-C bonds, cyanide anion generated by cleavage of multiple bonds, and protonated and deprotonated glycine. The dependence of the yield of each fragment on projectile energy was examined; different behavior was observed for positive and negative fragments. Considering that biomolecular fragmentation may be induced by secondary electrons ejected from the water molecules surrounding biomolecules, we calculated the cross section for ejection of secondary electrons from liquid water. We found that the formation of both positive and negative glycine fragment ions correlated with the predicted emission of secondary electrons at different projectile energies. The formation of [Gly-H] fragments, typical for gas phase dissociative electron attachment to amino acids, is shown to be caused by electrons from the low-energy part of the secondary electron distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5081883 | DOI Listing |
Front Immunol
December 2024
Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China.
Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.
View Article and Find Full Text PDFACS Appl Energy Mater
December 2024
School of Chemistry, University of Bristol, Cantocks Close, BS8 1TS Bristol, U.K.
Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China. Electronic address:
Traditional homogeneous Fenton systems face limitations, including a narrow pH range, potential secondary pollution, and poor repeatability. In this study, these bottlenecks in tetracycline wastewater treatment were addressed with using carbonized porous polyethyleneimine-grafted lignin microspheres (PLMs) supported Fe-loading catalysts (PLMs/Fe-C). An optimized PLMs/Fe-C catalyst under specific conditions (carbonization temperature: 350 °C, PLMs: Fe = 1:1, and alkali lignin: PEI = 1:4) was developed, which proved to be an efficient Fenton-like catalyst for tetracycline (TC) degradation.
View Article and Find Full Text PDFSci Rep
December 2024
Science Group, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
The earliest named stromatolite Cryptozoon Hall, 1884 (Late Cambrian, ca. 490 Ma, eastern New York State), was recently re-interpreted as an interlayered microbial mat and non-spiculate (keratosan) sponge deposit. This "classic stromatolite" is prominent in a fundamental debate concerning the significance or even existence of non-spiculate sponges in carbonate rocks from the Neoproterozoic (Tonian) onwards.
View Article and Find Full Text PDFCEN Case Rep
December 2024
Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato-Ku, Tokyo, 105-8461, Japan.
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide with heterogeneous histopathological phenotypes. Although IgAN with membranoproliferative glomerulonephritis (MPGN)-like features has been reported in children and adults, treatment strategies for this rare IgAN subtype have not been established. Here, we present the case of a 56-year-old man with no history of kidney disease who initially presented with nephrotic syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!