Pythium Species Associated with Root Dysfunction of Creeping Bentgrass in Maryland.

Plant Dis

Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park 20742.

Published: June 1999

Putting green samples (n = 109) were inspected for the presence of Pythium oospores in roots of plants from golf courses (n = 39) in Maryland and adjacent states. Twenty-eight Pythium isolates were recovered from creeping bentgrass (Agrostis palustris) (n = 25) and annual bluegrass (Poa annua) (n = 3) plants. Most isolates associated with Pythium-induced root dysfunction were from greens less than 3 years of age and were obtained primarily between March and June, 1995 to 1997. Eight Pythium species (P. aristosporum, P. aphanidermatum, P. catenulatum, P. graminicola, P. torulosum, P. vanterpoolii, P. volutum, and P. ultimum var. ultimum) were isolated from creeping bentgrass and two species (P. graminicola and P. torulosum) were from annual bluegrass. All species, except P. catenulatum, were pathogenic to 'Crenshaw' creeping bentgrass seedlings in postemergence pathogenicity tests. P. aristosporum (n = 3) and P. aphanidermatum (n = 1) were highly aggressive at a low (18°C) and a high temperature (28°C). P. graminicola (n = 1) was low to moderately aggressive. P. torulosum (n = 12) was the most frequently isolated species, but most isolates were either nonpathogenic or caused very little disease. P. aristosporum (n = 3) and P. aphanidermatum (n = 1) were highly aggressive and were associated with rapid growth at 18 and 28°C on cornmeal agar. P. volutum (n = 1) was highly aggressive at 18°C, but was one of slowest growing isolates. Infected roots were generally symptomless, and the number of oospores observed in roots was not always a good indicator of disease or of the aggressiveness of an isolate. Large numbers of oospores of low or even nonpathogenic species may cause dysfunction of creeping bentgrass roots.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS.1999.83.6.516DOI Listing

Publication Analysis

Top Keywords

creeping bentgrass
20
aristosporum aphanidermatum
12
highly aggressive
12
pythium species
8
root dysfunction
8
dysfunction creeping
8
annual bluegrass
8
graminicola torulosum
8
aphanidermatum highly
8
creeping
5

Similar Publications

Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.

View Article and Find Full Text PDF

Exploring sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens.

Mar Drugs

November 2024

Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.

This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.

View Article and Find Full Text PDF
Article Synopsis
  • - Root-knot nematodes were identified as the likely cause of serious decline in creeping bentgrass putting greens at a golf course in Indian Wells, California, showing symptoms like yellowing and stunted growth.
  • - Morphological and genetic analysis confirmed the presence of the nematodes, with greenhouse trials revealing that many monocot plants could host them, but dicots did not support reproduction.
  • - Temperature studies showed that the nematode's life cycle thrives between 17-35 °C, but in greenhouse conditions, even high levels of nematode presence did not significantly harm the bentgrass, suggesting other factors may be involved in the putting greens' damage.
View Article and Find Full Text PDF

Dehydration priming remodels protein abundance and phosphorylation level regulating tolerance to subsequent dehydration or salt stress in creeping bentgrass.

J Proteomics

January 2025

Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Article Synopsis
  • Dehydration priming (DP) creates a form of stress memory that enhances plants' abilities to adapt to future dehydration and salt stresses, but the specific molecular mechanisms behind this process remain unclear.
  • This study focused on identifying proteins, their phosphorylation levels, and metabolic pathways involved in DP-induced tolerance to dehydration and salt in the grass species Agrostis stolonifera.
  • Findings revealed that DP affects various proteins and phosphorylation sites differently under dehydration and salt conditions, highlighting distinct metabolic pathways and post-translational modifications that contribute to the plant's stress adaptability.
View Article and Find Full Text PDF

Dollar spot is a destructive foliar disease of amenity turfgrass caused by spp. fungi, mainly , on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as ; however, the role of OA in the pathogenic development of remains unclear due to its recalcitrance to genetic manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!