Putting green samples (n = 109) were inspected for the presence of Pythium oospores in roots of plants from golf courses (n = 39) in Maryland and adjacent states. Twenty-eight Pythium isolates were recovered from creeping bentgrass (Agrostis palustris) (n = 25) and annual bluegrass (Poa annua) (n = 3) plants. Most isolates associated with Pythium-induced root dysfunction were from greens less than 3 years of age and were obtained primarily between March and June, 1995 to 1997. Eight Pythium species (P. aristosporum, P. aphanidermatum, P. catenulatum, P. graminicola, P. torulosum, P. vanterpoolii, P. volutum, and P. ultimum var. ultimum) were isolated from creeping bentgrass and two species (P. graminicola and P. torulosum) were from annual bluegrass. All species, except P. catenulatum, were pathogenic to 'Crenshaw' creeping bentgrass seedlings in postemergence pathogenicity tests. P. aristosporum (n = 3) and P. aphanidermatum (n = 1) were highly aggressive at a low (18°C) and a high temperature (28°C). P. graminicola (n = 1) was low to moderately aggressive. P. torulosum (n = 12) was the most frequently isolated species, but most isolates were either nonpathogenic or caused very little disease. P. aristosporum (n = 3) and P. aphanidermatum (n = 1) were highly aggressive and were associated with rapid growth at 18 and 28°C on cornmeal agar. P. volutum (n = 1) was highly aggressive at 18°C, but was one of slowest growing isolates. Infected roots were generally symptomless, and the number of oospores observed in roots was not always a good indicator of disease or of the aggressiveness of an isolate. Large numbers of oospores of low or even nonpathogenic species may cause dysfunction of creeping bentgrass roots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS.1999.83.6.516 | DOI Listing |
Protoplasma
January 2025
Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.
View Article and Find Full Text PDFMar Drugs
November 2024
Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.
View Article and Find Full Text PDFJ Nematol
March 2024
Department of Nematology, University of California Riverside, 3401 Watkins Drive, Riverside, CA 92521.
J Proteomics
January 2025
Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:
Phytopathology
November 2024
Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A.
Dollar spot is a destructive foliar disease of amenity turfgrass caused by spp. fungi, mainly , on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as ; however, the role of OA in the pathogenic development of remains unclear due to its recalcitrance to genetic manipulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!