The stability and transport of clay colloids in groundwater are strongly influenced by colloid interactions with dissolved organic matter (DOM). Protein is an important DOM component that is ubiquitous in natural water, reclaimed water, and soil solutions. To date, the interactions between clay colloids and proteins have not been fully studied. The objective of this study was to examine the effect of bovine serum albumin (BSA), a representative protein, on the stability, aggregation, and transport of kaolinite colloids under neutral pH conditions. Hydrodynamic diameter and ζ-potential measurements, stability tests, and column transport experiments were performed in salt solutions with a range of ionic strengths and different BSA concentrations at pH 7. Additionally, BSA-kaolinite colloid interactions were studied using TEM and batch adsorption experiments. The experimental results showed that BSA prevented colloid aggregation and increased the stability and transport of colloids, especially at high ionic strength, even though the charges of kaolinite colloids were less negative in the presence of BSA. Theoretical calculation of the interaction energies indicated that XDLVO theory, in which the steric force is considered due to BSA adsorption, could correctly quantify the interaction energies in the presence of BSA. This study demonstrated that the role of protein needs to be determined in order to better predict the overall effect of DOM on particle aggregation and transport in the soil environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.02.022 | DOI Listing |
ACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, University of Alberta, Edmonton, Canada.
Cellular protein expression is coordinated posttranscriptionally by an intricate regulatory network. The current presumption is that microRNAs (miRNAs) work by repression of functionally related targets within a system. In recent work, up-regulation of protein expression via direct interactions of messenger RNA with miRNA has been found in dividing cells, providing an additional mechanism of regulation.
View Article and Find Full Text PDFNanomicro Lett
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells. The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses. However, how these groups synergistically affect the enhancement beyond passivation is still unclear.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.
Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications.
View Article and Find Full Text PDFDevelopment
January 2025
Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula suggesting a critical role prior to gastrulation. We find depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!