As soil cadmium (Cd) contamination becomes a serious concern and one of the significant environmental pollution issues all over the world, knowledge of the basic chemistry, origin, inputs, sources, quantity, chemical forms, reactions, as well as the fate and transport of Cd in different types of soil is crucial for better understanding Cd bioavailability, health risks and remedial options. This study aimed to increase the current knowledge on the complex interdependence between the factors affecting behavior, transport and fate of Cd in the soil and to test and compare the performance of the stabilization agents in different soil types. Soils demonstrated various sorption affinity and capacity for Cd accumulation, which proved to be positively correlated with soil pH and the cation exchange capacity (CEC). With increasing levels of contamination, sequential extraction analysis showed the highest increase of relative Cd amounts in the exchangeable fraction regardless of the soil properties, suggesting that added Cd is principally associated with the easily accessible and mobile fraction. For different initial Cd concentrations and soil types, Cd sorption reached the quasi-equilibrium within 24 h of contact. Prolonged aging (two months) influenced the natural stabilization of Cd in all types of soil, but only at low contamination level. The application of both, conventional (slaked lime Ca(OH)) and alternative phosphate-rich (annealed bovine bones B) amendments, resulted in Cd relocation and reduction of exchangeable Cd content. Although the effect was smaller when apatite amendment was utilized, observed re-distribution of Cd to more stable soil fractions is preferable for achieving long-term stabilization. Cd concentrations extracted in exchangeable and acid soluble fractions after the treatments of contaminated soil samples suggest that the practical applicability of in situ immobilization depends on the soil properties and the level of contamination, as well as that effect, should be monitored for the possible re-mobilization of Cd.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.03.001DOI Listing

Publication Analysis

Top Keywords

soil
13
soil properties
12
contaminated soil
8
contamination level
8
situ immobilization
8
agents soil
8
types soil
8
soil types
8
contamination
5
cadmium retention
4

Similar Publications

Multi-locus genome wide association study uncovers genetics of fresh seed dormancy in groundnut.

BMC Plant Biol

December 2024

Center of Excellence in Genomics & Systems Biology (CEGSB) and Centre for Pre-breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.

Pre-harvest sprouting (PHS) in groundnut leads to substantial yield losses and reduced seed quality, resulting in reduced market value of groundnuts. Breeding cultivars with 14-21 days of fresh seed dormancy (FSD) holds promise for precisely mitigating the yield and quality deterioration. In view of this, six multi-locus genome-wide association study (ML-GWAS) models alongside a single-locus GWAS (SL-GWAS) model were employed on a groundnut mini-core collection using multi season phenotyping and 58 K "Axiom_Arachis" array genotyping data.

View Article and Find Full Text PDF

Visible light-driven photocatalytic degradation of atrazine in aqueous phase: impact of the g-CN/TiO/NiFeO nanocomposite activated by potassium peroxymonosulfate.

Environ Sci Pollut Res Int

December 2024

Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.

The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.

View Article and Find Full Text PDF

Tobacco Fusarium root rot is caused by various Fusarium species, with eleven species reported, among which F. oxysporum and F. solani are main responsible in China (Yang et al.

View Article and Find Full Text PDF

Tire Wear Particles Exposure Enhances Denitrification in Soil by Enriching Labile DOM and Shaping the Microbial Community.

Environ Sci Technol

December 2024

State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

Tire wear particles (TWP) are emerging contaminants in the soil environment due to their widespread occurrence and potential threat to soil health. However, their impacts on soil biogeochemical processes remain unclear. Here, we investigated the effects of TWP at various doses and their leachate on soil respiration and denitrification using a robotized continuous-flow incubation system in upland soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!