DNA repair in xeroderma pigmentosum complementation groups C and D occurs at a low level. Measurements of pyrimidine dimers remaining in bulk DNA from the whole genome indicated very little excision in either complementation group. The repair sites in group C cells were, however, clustered together in small regions of the genome which appeared to be mended nearly as efficiently as the whole genome is mended in normal cells, while repair in group D cells was randomly distributed. Growth of normal cells in cycloheximide or 3-aminobenzamide neither inhibited repair nor altered the distribution of repair sites. Growth of normal cells in novobiocin or aphidicolin inhibited excision but repair remained randomly distributed. On the basis of these observations, and consideration of other cellular features of group C and D, we suggest that group C may represent a mutation which results in a low level of repair enzymes with normal function. Group D, on the other hand, may represent a mutation resulting in functionally defective repair enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-8817(86)90051-9DOI Listing

Publication Analysis

Top Keywords

normal cells
12
excision repair
8
repair xeroderma
8
xeroderma pigmentosum
8
group
8
group group
8
clustered small
8
repair
8
low level
8
repair sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!