A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing tritium internalisation in zebrafish early life stages: Importance of rapid isotopic exchange. | LitMetric

Assessing tritium internalisation in zebrafish early life stages: Importance of rapid isotopic exchange.

J Environ Radioact

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France.

Published: July 2019

Tritium (H) is mainly released into the environment in the form of tritiated water (HTO) by nuclear power plants and nuclear fuel reprocessing plants. To better understand how organisms may be affected by contamination to H it is essential to link observed effects to a correct estimation of absorbed dose rates. Due to quick isotopic exchanges between H and hydrogen, H measurement is difficult in small organisms such as zebrafish embryo, a model in ecotoxicological assay. This work aimed to optimise tritium measurement protocol to better characterise internalisation by early life stages of zebrafish. Zebrafish eggs were exposed at one HTO activity concentration of 1.22 × 10 Bq/mL. This activity was calculated to correspond to theoretical dose rates of 0.4 mGy/h, where some deleterious effects are expected on young fish. A protocol for the preparation of biological samples was adapted from the method classically used to segregate the different forms of tritium in organisms. To deal with very quick isotopic exchanges of H with hydrogen, the impacts of washing by non-tritiated water as well as the bias induced by absorbed tritium around organisms on the measured activity concentration were studied. We managed to develop protocols to perform total tritium and total organically bound tritium (OBT) activity concentrations measurements in zebrafish eggs and larvae. The measurement of these both forms allowed the calculation of tissue-free-water-tritium (TFWT). To better understand total tritium internalisation, a study of total tritium kinetics from 4 hpf (hour post-fertilization) to 168 hpf was performed. OBT and TFWT were also assessed to complete the total tritium internalisation kinetics. The internalisation is a rapid phenomenon reaching a steady-state within 24 h after the beginning of contamination for total tritium and TFWT, with concentration factors and TFWT/HTO close to unity. OBT formation seemed to be slower. It appeared that OBT content in organisms was low with an OBT/TFWT ratio of about 8% for both stages (24 hpf and 96 hpf). To verify absorbed dose rates at key developmental stages (24 hpf eggs and 96 hpf larvae), they were calculated from total tritium activity concentrations after exposure at 1.22 × 10 and 1.22 × 10 Bq/mL, as these two activity concentrations were used to assess effects of tritium in another part of the study. Dose rates calculated from total tritium activity concentrations measured in 24 hpf eggs and 96 hpf larvae were consistent with the nominal ones, which validates the robustness of the protocol developed in the present study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2019.02.009DOI Listing

Publication Analysis

Top Keywords

total tritium
28
dose rates
16
activity concentrations
16
tritium
13
tritium internalisation
12
early life
8
life stages
8
better understand
8
absorbed dose
8
quick isotopic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!