Distributed cognition generally refers to situations in which task requirements are shared among multiple agents or, potentially, off-loaded onto the environment. With few exceptions, socially distributed cognition has largely been discussed in terms of intraspecific interactions. This conception fails to capture some forms of group-level cognition among human and non-human animals that are not readily measured or explained in mentalistic or verbal terms. In response to these limitations, we argue for a more stringent set of empirically-verifiable criteria for assessing whether a system is an instance of distributed cognition: interaction-dominant dynamics, agency, and shared task orientation. We apply this framework to humans and working dogs, and contrast the human-dog socially distributed cognitive system with humans using non-biological tools and human interaction with draft animals. The human-dog system illustrates three operationalizable factors for classifying phenomena as socially distributed cognition and extends the framework to interspecies distributed cognition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.beproc.2019.03.001 | DOI Listing |
Cortex
December 2024
Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada.
It has been demonstrated that humans exhibit an attention bias towards the lower visual field (e.g., faster target detection for targets appearing below eye level).
View Article and Find Full Text PDFPsychon Bull Rev
January 2025
Department of Business and Information Science, Japan International University, Tsukuba, Japan.
Previous research has suggested that numerosity estimation and counting are closely related to distributed and focused attention, respectively (Chong & Evans, WIREs Cognitive Science, 2(6), 634-638, 2011). Given the critical role of color in guiding attention, this study investigated its effects on numerosity processing by manipulating both color variety (single color, medium variety, high variety) and spatial arrangement (clustered, random). Results from the estimation task revealed that high color variety led to a perceptual bias towards larger quantities, regardless of whether colors were clustered or randomly arranged.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, University of Trento, Trento, 38123, Italy.
The analysis of electrophysiological recordings of the human brain in resting state is a key experimental technique in neuroscience. Resting state is the default condition to characterize brain dynamics. Its successful implementation relies both on the capacity of subjects to comply with the requirement of staying awake while not performing any cognitive task, and on the capacity of the experimenter to validate that compliance.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest.
View Article and Find Full Text PDFJ Psychiatry Neurosci
January 2025
From the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China (X. Liu, Chen, K. Liu, Yan, Wu); the Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang Province, China (X. Liu, Chen, K. Liu, Yan); the Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, China (Chen); the Hebei General Hospital, Shijiazhuang, Hebei 050050, China (Cheng); the Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China (Wei, Hou, Li, Guo); the Zhoushan Second People's Hospital, Zhoushan, Zhejiang 316000, China (Guo)
Background: Both depressive symptoms and neurotransmitter changes affect the characteristics of functional brain networks in clinical patients. We sought to explore how brain functional grading is organized among patients with mild cognitive impairment and depressive symptoms (D-MCI) and whether changes in brain organization are related to neurotransmitter distribution.
Methods: Using 3 T magnetic resonance imaging (MRI) we acquired functional MRI (fMRI) data from patients with D-MCI, patients with mild cognitive impairment without depression (nD-MCI), and healthy controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!