Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503659 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2019.02.031 | DOI Listing |
Int J Mol Sci
December 2024
Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.
Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an αβ-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC αβ-heterodimer in human pericytes.
View Article and Find Full Text PDFInflammation
January 2025
Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Guangdong Province, Shenzhen, People's Republic of China.
Erythrodermic psoriasis (EP) is a life-threatening variant of psoriasis. In this study, we contrasted the vascular endothelial cells (ECs) in EP lesions against those in psoriasis vulgaris and healthy controls. Utilizing single-cell RNA sequencing, immunofluorescence, and flow cytometry on human and mouse samples, we observed a marked increase and activation of EP ECs, which upregulated genes relative to angiogenesis, leukocyte adhesion and antigen presentation.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.
Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.
View Article and Find Full Text PDFSemin Arthritis Rheum
February 2025
Department of Rheumatology, North Bristol NHS Trust, Bristol, UK; Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK. Electronic address:
Nat Rev Dis Primers
November 2024
Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
The vascular endothelial barrier maintains intravascular volume and metabolic homeostasis. Although plasma fluids and proteins extravasate continuously from tissue microvasculature (capillaries, post-capillary venules), systemic vascular leakage increases in critical illness associated with sepsis, burns and trauma, among others, or in association with certain drugs or toxin exposures. Systemically dysregulated fluid homeostasis, which can lead to hypovolaemia, hypotensive shock and widespread tissue oedema, has been termed systemic capillary leak syndrome (SCLS) when overt secondary causes (for example, heart or liver failure) are excluded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!